Scalable machine learning approach to light induced order disorder phase transitions with ab initio accuracy

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Andrea Corradini, Giovanni Marini, Matteo Calandra
{"title":"Scalable machine learning approach to light induced order disorder phase transitions with ab initio accuracy","authors":"Andrea Corradini, Giovanni Marini, Matteo Calandra","doi":"10.1038/s41524-025-01614-5","DOIUrl":null,"url":null,"abstract":"<p>While machine learning excels in simulating material thermal properties, its application to order-disorder non-thermal phase transitions induced by visible light has been limited by challenges in accurately describing potential energy surfaces, forces, and vibrational properties in the presence of a photoexcited electron-hole plasma. Here, we present a novel approach that combines constrained density functional theory with machine learning, yielding highly reliable interatomic potentials capable of capturing electron-hole plasma effects on structural properties. Applied to photoexcited silicon, our potential accurately reproduces the phonon dispersion of the crystal phase and allows for molecular dynamics simulations of tens of thousands of atoms. We show that, at low enough temperatures, the non-thermal melting transition is driven by a soft phonon and the formation of a double-well potential, at odds with thermal melting being strictly first order. Our method paves the way to large-scale, long-time simulations of light-induced order-disorder phase transitions with ab initio accuracy.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"142 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01614-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

While machine learning excels in simulating material thermal properties, its application to order-disorder non-thermal phase transitions induced by visible light has been limited by challenges in accurately describing potential energy surfaces, forces, and vibrational properties in the presence of a photoexcited electron-hole plasma. Here, we present a novel approach that combines constrained density functional theory with machine learning, yielding highly reliable interatomic potentials capable of capturing electron-hole plasma effects on structural properties. Applied to photoexcited silicon, our potential accurately reproduces the phonon dispersion of the crystal phase and allows for molecular dynamics simulations of tens of thousands of atoms. We show that, at low enough temperatures, the non-thermal melting transition is driven by a soft phonon and the formation of a double-well potential, at odds with thermal melting being strictly first order. Our method paves the way to large-scale, long-time simulations of light-induced order-disorder phase transitions with ab initio accuracy.

Abstract Image

基于从头算精度的可扩展机器学习光诱导有序无序相变方法
虽然机器学习在模拟材料热性能方面表现出色,但它在可见光诱导的有序-无序非热相变中的应用受到了限制,因为在光激发电子-空穴等离子体存在的情况下,难以准确描述势能表面、力和振动特性。在这里,我们提出了一种将约束密度泛函理论与机器学习相结合的新方法,产生了高度可靠的原子间势,能够捕获电子-空穴等离子体对结构特性的影响。应用于光激发硅,我们的电位精确地再现了晶体相的声子色散,并允许数万个原子的分子动力学模拟。我们表明,在足够低的温度下,非热熔化转变是由软声子和双阱势的形成驱动的,与热熔化严格的一阶不一致。我们的方法为大规模、长时间模拟光诱导有序-无序相变铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信