3D/2D Core-Shell CsPbBr₃ Microcrystals for Stable X-Ray Detection and Imaging

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaoli Wang;Xingzhou Su;Wenxuan Yang;Zhiyuan Liu;Wenjie Luo;Binyun Han;Bin Tian;Dong Li;Xingchen He;Yang Zhang;Xue-Feng Yu;Yanliang Liu
{"title":"3D/2D Core-Shell CsPbBr₃ Microcrystals for Stable X-Ray Detection and Imaging","authors":"Xiaoli Wang;Xingzhou Su;Wenxuan Yang;Zhiyuan Liu;Wenjie Luo;Binyun Han;Bin Tian;Dong Li;Xingchen He;Yang Zhang;Xue-Feng Yu;Yanliang Liu","doi":"10.1109/LED.2025.3556477","DOIUrl":null,"url":null,"abstract":"Although metal halide perovskite (MHP) materials are promising candidates for direct X-ray detection, the surface and internal defects of perovskite polycrystalline thick films lead to severe noise current and poor device stability. Herein, a phenylethylammonium (PEA+) cladding layer was integrated with 3D CsPbBr3 grains, forming 3D/2D core-shell CsPbBr3 perovskite microcrystals. The PEA+, acting as the A-site cation, is able to passivate the surface defects, while the forming 2D perovskite cladding layer inhibits ion migration within CsPbBr3 grains. The blade-coated polycrystalline 3D/2D core-shell CsPbBr3 perovskite thick film exhibits a reduced trap density from <inline-formula> <tex-math>${4}.{32}\\times {10} ^{{10}}$ </tex-math></inline-formula> cm−3 to <inline-formula> <tex-math>${4}.{26}\\times {10} ^{{9}}$ </tex-math></inline-formula> cm−3 compared to conventional CsPbBr3 film, with ion migration activation energy increasing from 123 meV to 210 meV. Consequently, the obtained perovskite X-ray detector exhibits a high sensitivity of 29,<inline-formula> <tex-math>$460~\\mu $ </tex-math></inline-formula> C Gy<inline-formula> <tex-math>${}_{\\text {air}}^{-{1}}$ </tex-math></inline-formula> cm−2 and a low detection limit of 84 nGyair s−1 (50 keV X-ray photon energy), and the detector maintains long-term operational stability with a dark current drift as low as <inline-formula> <tex-math>${4}.{12}\\times {10} ^{-{5}}$ </tex-math></inline-formula> nA mm−1 s−1 V−1. Furthermore, we integrated the 3D/2D core-shell polycrystalline CsPbBr3 with a TFT chip (<inline-formula> <tex-math>${64}\\times {64}$ </tex-math></inline-formula> array) and successfully obtained a clear and high-contrast X-ray image of a mouse’s paw exhibiting a spatial resolution of 2.5 lp mm−1.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 6","pages":"936-939"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946977/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Although metal halide perovskite (MHP) materials are promising candidates for direct X-ray detection, the surface and internal defects of perovskite polycrystalline thick films lead to severe noise current and poor device stability. Herein, a phenylethylammonium (PEA+) cladding layer was integrated with 3D CsPbBr3 grains, forming 3D/2D core-shell CsPbBr3 perovskite microcrystals. The PEA+, acting as the A-site cation, is able to passivate the surface defects, while the forming 2D perovskite cladding layer inhibits ion migration within CsPbBr3 grains. The blade-coated polycrystalline 3D/2D core-shell CsPbBr3 perovskite thick film exhibits a reduced trap density from ${4}.{32}\times {10} ^{{10}}$ cm−3 to ${4}.{26}\times {10} ^{{9}}$ cm−3 compared to conventional CsPbBr3 film, with ion migration activation energy increasing from 123 meV to 210 meV. Consequently, the obtained perovskite X-ray detector exhibits a high sensitivity of 29, $460~\mu $ C Gy ${}_{\text {air}}^{-{1}}$ cm−2 and a low detection limit of 84 nGyair s−1 (50 keV X-ray photon energy), and the detector maintains long-term operational stability with a dark current drift as low as ${4}.{12}\times {10} ^{-{5}}$ nA mm−1 s−1 V−1. Furthermore, we integrated the 3D/2D core-shell polycrystalline CsPbBr3 with a TFT chip ( ${64}\times {64}$ array) and successfully obtained a clear and high-contrast X-ray image of a mouse’s paw exhibiting a spatial resolution of 2.5 lp mm−1.
用于稳定x射线探测和成像的3D/2D核壳CsPbBr₃微晶体
虽然金属卤化物钙钛矿(MHP)材料是直接x射线检测的有希望的候选者,但钙钛矿多晶厚膜的表面和内部缺陷导致严重的噪声电流和较差的器件稳定性。本文将苯乙基铵(PEA+)包层与三维CsPbBr3颗粒集成,形成三维/二维核壳CsPbBr3钙钛矿微晶体。PEA+作为a位阳离子,能够钝化表面缺陷,而形成的2D钙钛矿包层抑制了离子在CsPbBr3晶粒内的迁移。叶片包覆的多晶3D/2D核壳CsPbBr3钙钛矿厚膜的陷阱密度从100亿美元降低。{32}\乘以{10}^{{10}}$ cm−3到${4}。与常规CsPbBr3薄膜相比,离子迁移活化能从123 meV增加到210 meV。因此,所制备的钙钛矿x射线探测器具有29,460 ~\mu $ C Gy ${}_{\text {air}}^{-{1}}$ cm−2的高灵敏度和84 nGyair s−1 (50 keV x射线光子能量)的低检测限,且探测器在暗电流漂移低至${4}的情况下保持了长期的工作稳定性。{12}\times {10} ^{-{5}}$ nA mm−1 s−1 V−1。此外,我们将3D/2D核壳多晶CsPbBr3与TFT芯片(${64}\times{64}$阵列)集成在一起,成功获得了空间分辨率为2.5 lp mm−1的小鼠爪子的清晰高对比度x射线图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信