Zero product preserving additive maps on triangular algebras

IF 1 3区 数学 Q1 MATHEMATICS
Hoger Ghahramani, Neda Ghoreishi, Saber Naseri
{"title":"Zero product preserving additive maps on triangular algebras","authors":"Hoger Ghahramani,&nbsp;Neda Ghoreishi,&nbsp;Saber Naseri","doi":"10.1016/j.laa.2025.05.017","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose that <span><math><mi>T</mi><mi>r</mi><mi>i</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> is a unital triangular algebra, where <span><math><mi>M</mi></math></span> is a faithful <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>-bimodule, and <span><math><mi>U</mi></math></span> is a unital algebra. Let <span><math><mi>θ</mi><mo>:</mo><mi>T</mi><mi>r</mi><mi>i</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>B</mi><mo>)</mo><mo>→</mo><mi>U</mi></math></span> be a bijective zero product preserving additive map. We show that under some mild conditions <em>θ</em> is a product of a central invertible element and a ring isomorphism. Our result applies to block upper triangular matrix algebras, nest algebras on Banach spaces and nest subalgebras of von Neumann algebras.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 178-189"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002307","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that Tri(A,M,B) is a unital triangular algebra, where M is a faithful (A,B)-bimodule, and U is a unital algebra. Let θ:Tri(A,M,B)U be a bijective zero product preserving additive map. We show that under some mild conditions θ is a product of a central invertible element and a ring isomorphism. Our result applies to block upper triangular matrix algebras, nest algebras on Banach spaces and nest subalgebras of von Neumann algebras.
三角形代数上保持零积的加性映射
设Tri(A,M,B)是一个一元三角代数,其中M是一个忠实的(A,B)-双模,U是一个一元代数。设θ:Tri(A,M,B)→U是一个双目标零积保加性映射。我们证明了在一些温和的条件下,θ是中心可逆元素和环同构的乘积。我们的结果适用于块上三角矩阵代数、Banach空间上的巢代数和von Neumann代数的巢子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信