{"title":"Exploring the fracture mechanism of multilayer ceramic capacitors via combined simulation and experiment","authors":"Sen Yang , Qin Xu , Fei Shen , Liao-Liang Ke","doi":"10.1016/j.microrel.2025.115800","DOIUrl":null,"url":null,"abstract":"<div><div>As a basic component, multilayer ceramic capacitors (MLCCs) have been widely used in many engineering fields. Failure caused by printed circuit board flex deserves special attention throughout the entire lifecycle of MLCCs. In this failure pattern, the failure probabilities vary across different types of MLCCs. The initial damage location and the direction of cracking propagation display distinct characteristics. This paper presents the MLCC equivalent model by using homogenization theory in finite element method (FEM), and simulates the flex failure of different types of MLCCs. Three-point bending experiments are conducted to validate the FEM results, revealing the underlying cause of flex cracking. The failure pattern inferred by FEM aligns well with the experiment result, with the maximum error of only 7.56 %, demonstrating the equivalent model's effectiveness. Furthermore, we conduct a sensitivity analysis of geometric parameters, including the length-width ratio, terminal electrode width, stacking height, and solder joint height. Our study reveals the underlying mechanism of MLCC flex failure and identifies the key design factors influencing MLCC reliability. These findings provide valuable insights into the design, application, and enhancement of MLCC reliability.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"171 ","pages":"Article 115800"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425002136","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As a basic component, multilayer ceramic capacitors (MLCCs) have been widely used in many engineering fields. Failure caused by printed circuit board flex deserves special attention throughout the entire lifecycle of MLCCs. In this failure pattern, the failure probabilities vary across different types of MLCCs. The initial damage location and the direction of cracking propagation display distinct characteristics. This paper presents the MLCC equivalent model by using homogenization theory in finite element method (FEM), and simulates the flex failure of different types of MLCCs. Three-point bending experiments are conducted to validate the FEM results, revealing the underlying cause of flex cracking. The failure pattern inferred by FEM aligns well with the experiment result, with the maximum error of only 7.56 %, demonstrating the equivalent model's effectiveness. Furthermore, we conduct a sensitivity analysis of geometric parameters, including the length-width ratio, terminal electrode width, stacking height, and solder joint height. Our study reveals the underlying mechanism of MLCC flex failure and identifies the key design factors influencing MLCC reliability. These findings provide valuable insights into the design, application, and enhancement of MLCC reliability.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.