Ming-Chiang Chang, Sebastian Ament, Maximilian Amsler, Duncan R. Sutherland, Lan Zhou, John M. Gregoire, Carla P. Gomes, R. Bruce van Dover, Michael O. Thompson
{"title":"Probabilistic phase labeling and lattice refinement for autonomous materials research","authors":"Ming-Chiang Chang, Sebastian Ament, Maximilian Amsler, Duncan R. Sutherland, Lan Zhou, John M. Gregoire, Carla P. Gomes, R. Bruce van Dover, Michael O. Thompson","doi":"10.1038/s41524-025-01627-0","DOIUrl":null,"url":null,"abstract":"<p>X-ray diffraction (XRD) is a powerful method for determining a material’s crystal structure in high-throughput experimentation, and is widely being incorporated in artificially intelligent agents for autonomous scientific discovery. However, rapid, automated, and reliable analysis of XRD data at rates that match the pace of experimental measurements at a synchrotron source remains a major challenge. To address these issues, we developed CrystalShift for rapid and efficient probabilistic XRD phase labeling employing symmetry-constrained optimization, best-first tree search, and Bayesian model comparison. The algorithm estimates probabilities for phase combinations without requiring additional phase space information or training. We demonstrate that CrystalShift provides robust probability estimates, outperforming existing methods on synthetic and experimental datasets, and can be readily integrated into high-throughput experimental workflows. In addition to efficient phase labeling, CrystalShift offers quantitative insights into materials’ structural parameters, which facilitate both expert evaluation and AI-based modeling of the phase space, ultimately accelerating materials identification and discovery.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"39 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01627-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray diffraction (XRD) is a powerful method for determining a material’s crystal structure in high-throughput experimentation, and is widely being incorporated in artificially intelligent agents for autonomous scientific discovery. However, rapid, automated, and reliable analysis of XRD data at rates that match the pace of experimental measurements at a synchrotron source remains a major challenge. To address these issues, we developed CrystalShift for rapid and efficient probabilistic XRD phase labeling employing symmetry-constrained optimization, best-first tree search, and Bayesian model comparison. The algorithm estimates probabilities for phase combinations without requiring additional phase space information or training. We demonstrate that CrystalShift provides robust probability estimates, outperforming existing methods on synthetic and experimental datasets, and can be readily integrated into high-throughput experimental workflows. In addition to efficient phase labeling, CrystalShift offers quantitative insights into materials’ structural parameters, which facilitate both expert evaluation and AI-based modeling of the phase space, ultimately accelerating materials identification and discovery.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.