Influence of fertilizer content and processing condition on the properties of slow-release thermoplastic starch/epoxidized natural rubber blend fertilizer systems

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yeampon Nakaramontri, Lompong Klinnawee
{"title":"Influence of fertilizer content and processing condition on the properties of slow-release thermoplastic starch/epoxidized natural rubber blend fertilizer systems","authors":"Yeampon Nakaramontri,&nbsp;Lompong Klinnawee","doi":"10.1186/s40538-025-00791-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Urea-based fertilizers are essential for agricultural productivity but contribute to environmental degradation by releasing soil nitrogen (N) through N leaching and runoff. To address these issues, this study develops and characterizes slow-release composites of thermoplastic starch (TPS) and epoxidized natural rubber (ENR) that incorporate 46-0-0 fertilizer. TPS, recognized for its moisture sensitivity and biodegradability, was blended with ENR to enhance matrix compatibility and optimize nutrient release from the fertilizer. The blending process included different fertilizer concentrations (6.9, 10, 15, and 20 wt%) within various components of the composite.</p><h3>Results</h3><p>The characterization included evaluation of mechanical properties, water absorbance, biodegradability in soil, ammonium release, and ammonium leaching. The TPS/ENR composites exhibited a two-stage decomposition, with TPS dissolving first to provide an initial nutrient boost, followed by the biodegradation of ENR to ensure sustained nutrient delivery. Ammonium release assays demonstrated that TPS/ENR composites delayed nutrient dissolution compared to conventional fertilizers, significantly reducing nitrogen loss through leaching. Notably, the TPS/ENR composite with 6.9 wt% of 46-0-0 fertilizer exhibited the highest efficiency, achieving sustained ammonium release and enhancing soil nitrogen retention while mitigating phytotoxicity in lettuce and maize germination assays.</p><h3>Conclusions</h3><p>These findings highlight the potential and environmental benefits of delivering fertilizer in TPS/ENR composites to improve nitrogen fertilizer efficiency in agricultural systems. The slow-release mechanism provides both initial and sustained nutrient supply, addressing the dual challenges of early crop nutritional needs and long-term environmental sustainability.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00791-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00791-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Urea-based fertilizers are essential for agricultural productivity but contribute to environmental degradation by releasing soil nitrogen (N) through N leaching and runoff. To address these issues, this study develops and characterizes slow-release composites of thermoplastic starch (TPS) and epoxidized natural rubber (ENR) that incorporate 46-0-0 fertilizer. TPS, recognized for its moisture sensitivity and biodegradability, was blended with ENR to enhance matrix compatibility and optimize nutrient release from the fertilizer. The blending process included different fertilizer concentrations (6.9, 10, 15, and 20 wt%) within various components of the composite.

Results

The characterization included evaluation of mechanical properties, water absorbance, biodegradability in soil, ammonium release, and ammonium leaching. The TPS/ENR composites exhibited a two-stage decomposition, with TPS dissolving first to provide an initial nutrient boost, followed by the biodegradation of ENR to ensure sustained nutrient delivery. Ammonium release assays demonstrated that TPS/ENR composites delayed nutrient dissolution compared to conventional fertilizers, significantly reducing nitrogen loss through leaching. Notably, the TPS/ENR composite with 6.9 wt% of 46-0-0 fertilizer exhibited the highest efficiency, achieving sustained ammonium release and enhancing soil nitrogen retention while mitigating phytotoxicity in lettuce and maize germination assays.

Conclusions

These findings highlight the potential and environmental benefits of delivering fertilizer in TPS/ENR composites to improve nitrogen fertilizer efficiency in agricultural systems. The slow-release mechanism provides both initial and sustained nutrient supply, addressing the dual challenges of early crop nutritional needs and long-term environmental sustainability.

Graphical abstract

肥料含量和加工条件对热塑性淀粉/环氧化天然橡胶缓释共混肥料体系性能的影响
基于尿素的肥料对农业生产力至关重要,但通过氮淋溶和径流释放土壤氮(N),导致环境退化。为了解决这些问题,本研究开发了热塑性淀粉(TPS)和环氧化天然橡胶(ENR)的缓释复合材料,并对其进行了表征。TPS具有水分敏感性和可生物降解性,与ENR混合以增强基质相容性并优化肥料的养分释放。混合过程包括在复合材料的不同组分中不同的肥料浓度(6.9、10、15和20 wt%)。结果表征包括力学性能、吸水率、土壤生物降解性、铵释放和铵浸出的评价。TPS/ENR复合材料表现出两阶段分解,TPS首先溶解以提供初始的营养增加,然后ENR的生物降解以确保持续的营养输送。铵释放试验表明,与常规肥料相比,TPS/ENR复合材料延缓了养分的溶解,显著减少了氮的浸出损失。值得注意的是,在生菜和玉米发芽试验中,TPS/ENR复合肥料添加6.9%的46-0-0肥料表现出最高的效率,实现了铵的持续释放,增强了土壤氮的保留,同时减轻了植物毒性。结论TPS/ENR复合材料在提高农业系统氮肥利用率方面具有潜在的环境效益。缓释机制提供了初始和持续的养分供应,解决了作物早期营养需求和长期环境可持续性的双重挑战。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信