Influence of fertilizer content and processing condition on the properties of slow-release thermoplastic starch/epoxidized natural rubber blend fertilizer systems
{"title":"Influence of fertilizer content and processing condition on the properties of slow-release thermoplastic starch/epoxidized natural rubber blend fertilizer systems","authors":"Yeampon Nakaramontri, Lompong Klinnawee","doi":"10.1186/s40538-025-00791-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Urea-based fertilizers are essential for agricultural productivity but contribute to environmental degradation by releasing soil nitrogen (N) through N leaching and runoff. To address these issues, this study develops and characterizes slow-release composites of thermoplastic starch (TPS) and epoxidized natural rubber (ENR) that incorporate 46-0-0 fertilizer. TPS, recognized for its moisture sensitivity and biodegradability, was blended with ENR to enhance matrix compatibility and optimize nutrient release from the fertilizer. The blending process included different fertilizer concentrations (6.9, 10, 15, and 20 wt%) within various components of the composite.</p><h3>Results</h3><p>The characterization included evaluation of mechanical properties, water absorbance, biodegradability in soil, ammonium release, and ammonium leaching. The TPS/ENR composites exhibited a two-stage decomposition, with TPS dissolving first to provide an initial nutrient boost, followed by the biodegradation of ENR to ensure sustained nutrient delivery. Ammonium release assays demonstrated that TPS/ENR composites delayed nutrient dissolution compared to conventional fertilizers, significantly reducing nitrogen loss through leaching. Notably, the TPS/ENR composite with 6.9 wt% of 46-0-0 fertilizer exhibited the highest efficiency, achieving sustained ammonium release and enhancing soil nitrogen retention while mitigating phytotoxicity in lettuce and maize germination assays.</p><h3>Conclusions</h3><p>These findings highlight the potential and environmental benefits of delivering fertilizer in TPS/ENR composites to improve nitrogen fertilizer efficiency in agricultural systems. The slow-release mechanism provides both initial and sustained nutrient supply, addressing the dual challenges of early crop nutritional needs and long-term environmental sustainability.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00791-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00791-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Urea-based fertilizers are essential for agricultural productivity but contribute to environmental degradation by releasing soil nitrogen (N) through N leaching and runoff. To address these issues, this study develops and characterizes slow-release composites of thermoplastic starch (TPS) and epoxidized natural rubber (ENR) that incorporate 46-0-0 fertilizer. TPS, recognized for its moisture sensitivity and biodegradability, was blended with ENR to enhance matrix compatibility and optimize nutrient release from the fertilizer. The blending process included different fertilizer concentrations (6.9, 10, 15, and 20 wt%) within various components of the composite.
Results
The characterization included evaluation of mechanical properties, water absorbance, biodegradability in soil, ammonium release, and ammonium leaching. The TPS/ENR composites exhibited a two-stage decomposition, with TPS dissolving first to provide an initial nutrient boost, followed by the biodegradation of ENR to ensure sustained nutrient delivery. Ammonium release assays demonstrated that TPS/ENR composites delayed nutrient dissolution compared to conventional fertilizers, significantly reducing nitrogen loss through leaching. Notably, the TPS/ENR composite with 6.9 wt% of 46-0-0 fertilizer exhibited the highest efficiency, achieving sustained ammonium release and enhancing soil nitrogen retention while mitigating phytotoxicity in lettuce and maize germination assays.
Conclusions
These findings highlight the potential and environmental benefits of delivering fertilizer in TPS/ENR composites to improve nitrogen fertilizer efficiency in agricultural systems. The slow-release mechanism provides both initial and sustained nutrient supply, addressing the dual challenges of early crop nutritional needs and long-term environmental sustainability.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.