Yashu Yu , Xiaoxiao Feng , Imre Blank , Haoli Wang , Yiwen Zhu , Zhibin Liu , Li Ni , Chih-Cheng Lin , Kequn Wang , Yuan Liu
{"title":"A review of umami taste of Tea: Substances, perception mechanism, and physiological measurement prospects","authors":"Yashu Yu , Xiaoxiao Feng , Imre Blank , Haoli Wang , Yiwen Zhu , Zhibin Liu , Li Ni , Chih-Cheng Lin , Kequn Wang , Yuan Liu","doi":"10.1016/j.tifs.2025.105082","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Tea, celebrated for its delightful flavors and health benefits, is a globally cherished beverage. Umami taste is an essential contributor to its flavor profile and its perception mechanism is crucial for enhancing the taste quality of tea. The exploration of individual physiological and emotional responses to gustatory signals through physiological measurement techniques makes it possible to decode the mechanisms underlying umami perception.</div></div><div><h3>Scope and approach</h3><div>This article focuses on the umami taste of tea, providing a comprehensive review of the umami substances and the influencing factors. It discusses the umami perception mechanism from the perspectives of both umami-contributing and umami-enhancing aspects. Additionally, the paper explores the application prospects of physiological measurement technologies in decoding umami perception. This review aims to provide new analytical strategies for decoding umami and other taste perceptions.</div></div><div><h3>Key findings and conclusions</h3><div>Umami is one of the important sensory attributes contributing to the taste of tea products. The umami taste in tea is predominantly mediated by amino acids such as L-theanine, L-glutamic acid, and L-aspartic acid, with additional contributions from compounds like succinic acid and methylated catechins. The interaction of these umami compounds with the T1R1/T1R3 receptor complex involves a suite of molecular forces, including hydrogen bonding, hydrophobic interactions, van der Waals forces, and electrostatic interactions, which are essential for the stability and functionality of ligand-receptor binding. Neuroimaging and electrophysiological studies have further elucidated the neural basis of umami perception, providing a comprehensive understanding of the sensory input to cognitive processing associated with this taste modality.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"162 ","pages":"Article 105082"},"PeriodicalIF":15.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224425002183","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Tea, celebrated for its delightful flavors and health benefits, is a globally cherished beverage. Umami taste is an essential contributor to its flavor profile and its perception mechanism is crucial for enhancing the taste quality of tea. The exploration of individual physiological and emotional responses to gustatory signals through physiological measurement techniques makes it possible to decode the mechanisms underlying umami perception.
Scope and approach
This article focuses on the umami taste of tea, providing a comprehensive review of the umami substances and the influencing factors. It discusses the umami perception mechanism from the perspectives of both umami-contributing and umami-enhancing aspects. Additionally, the paper explores the application prospects of physiological measurement technologies in decoding umami perception. This review aims to provide new analytical strategies for decoding umami and other taste perceptions.
Key findings and conclusions
Umami is one of the important sensory attributes contributing to the taste of tea products. The umami taste in tea is predominantly mediated by amino acids such as L-theanine, L-glutamic acid, and L-aspartic acid, with additional contributions from compounds like succinic acid and methylated catechins. The interaction of these umami compounds with the T1R1/T1R3 receptor complex involves a suite of molecular forces, including hydrogen bonding, hydrophobic interactions, van der Waals forces, and electrostatic interactions, which are essential for the stability and functionality of ligand-receptor binding. Neuroimaging and electrophysiological studies have further elucidated the neural basis of umami perception, providing a comprehensive understanding of the sensory input to cognitive processing associated with this taste modality.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.