ENO3 regulates ferroptosis by interaction with PKM2 to promote the progression of metabolic dysfunction-associated steatotic liver disease.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Zhenzi Cao, Xue Li, Qian Hao, Jing Liu, Minghao Li, Baoding Li, Shengjuan Hu, Yanling Li, Xiaofei Li, Yuanyuan Tang, Fuliang Pan, Yanxia Liu, Min Niu
{"title":"ENO3 regulates ferroptosis by interaction with PKM2 to promote the progression of metabolic dysfunction-associated steatotic liver disease.","authors":"Zhenzi Cao, Xue Li, Qian Hao, Jing Liu, Minghao Li, Baoding Li, Shengjuan Hu, Yanling Li, Xiaofei Li, Yuanyuan Tang, Fuliang Pan, Yanxia Liu, Min Niu","doi":"10.14670/HH-18-933","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder characterized by excessive lipid accumulation in the liver. The glycolytic enzyme enolase 3 (ENO3) is reported to be most significantly elevated in the analysis of MASLD-related sequencing results based on the GEO database. However, the specific mechanism by which ENO3 regulates MASLD is not fully understood.</p><p><strong>Objective: </strong>To investigate the role and possible molecular mechanism of ENO3 in MASLD.</p><p><strong>Methods: </strong>The expression of ENO3 and PKM2 in the liver tissues of control and MASLD rats was detected by immunohistochemistry and western blot. <i>In vitro</i> studies involved treating THLE-2 cells with free fatty acids (FFA) and Ferrostatin-1 (Fer-1), as well as manipulating ENO3 expression via small interfering RNA (siRNA) and overexpression plasmids, and manipulating PKM2 expression via siRNA. Fat accumulation was assessed using Oil Red O staining and measurements of intracellular total cholesterol (TC) and triglycerides (TG). Ferroptosis markers, including SLC7A11, GPX4, Fe<sup>2+</sup>, and malondialdehyde (MDA), were evaluated. Protein-protein interactions between ENO3 and PKM2 were examined using co-immunoprecipitation (Co-IP) and immunofluorescence.</p><p><strong>Results: </strong>MASLD liver tissues exhibited significantly higher levels of ENO3 and PKM2. Silencing ENO3 in FFA-treated THLE-2 cells reduced fat accumulation, downregulated PKM2 expression, and decreased ferroptosis markers. Conversely, ENO3 overexpression promoted fat accumulation and ferroptosis, which were mitigated by Fer-1 or si-PKM2. Co-IP and immunofluorescence confirmed the physical interaction and co-localization of ENO3 and PKM2 in THLE-2 cells.</p><p><strong>Conclusions: </strong>ENO3 interacted with PKM2 to regulate ferroptosis and further promoted the progression of MASLD.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"18933"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-933","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder characterized by excessive lipid accumulation in the liver. The glycolytic enzyme enolase 3 (ENO3) is reported to be most significantly elevated in the analysis of MASLD-related sequencing results based on the GEO database. However, the specific mechanism by which ENO3 regulates MASLD is not fully understood.

Objective: To investigate the role and possible molecular mechanism of ENO3 in MASLD.

Methods: The expression of ENO3 and PKM2 in the liver tissues of control and MASLD rats was detected by immunohistochemistry and western blot. In vitro studies involved treating THLE-2 cells with free fatty acids (FFA) and Ferrostatin-1 (Fer-1), as well as manipulating ENO3 expression via small interfering RNA (siRNA) and overexpression plasmids, and manipulating PKM2 expression via siRNA. Fat accumulation was assessed using Oil Red O staining and measurements of intracellular total cholesterol (TC) and triglycerides (TG). Ferroptosis markers, including SLC7A11, GPX4, Fe2+, and malondialdehyde (MDA), were evaluated. Protein-protein interactions between ENO3 and PKM2 were examined using co-immunoprecipitation (Co-IP) and immunofluorescence.

Results: MASLD liver tissues exhibited significantly higher levels of ENO3 and PKM2. Silencing ENO3 in FFA-treated THLE-2 cells reduced fat accumulation, downregulated PKM2 expression, and decreased ferroptosis markers. Conversely, ENO3 overexpression promoted fat accumulation and ferroptosis, which were mitigated by Fer-1 or si-PKM2. Co-IP and immunofluorescence confirmed the physical interaction and co-localization of ENO3 and PKM2 in THLE-2 cells.

Conclusions: ENO3 interacted with PKM2 to regulate ferroptosis and further promoted the progression of MASLD.

ENO3通过与PKM2相互作用调节铁下沉,促进代谢功能障碍相关脂肪变性肝病的进展。
背景:代谢功能障碍相关的脂肪变性肝病(MASLD)是一种普遍存在的代谢紊乱,其特征是肝脏中过多的脂质积累。据报道,在基于GEO数据库的masld相关测序结果分析中,糖酵解酶烯醇化酶3 (ENO3)的表达最为显著。然而,ENO3调控MASLD的具体机制尚不完全清楚。目的:探讨ENO3在MASLD中的作用及可能的分子机制。方法:采用免疫组织化学和western blot法检测对照组和MASLD大鼠肝脏组织中ENO3和PKM2的表达。体外研究包括用游离脂肪酸(FFA)和铁抑素-1 (Fer-1)处理THLE-2细胞,通过小干扰RNA (siRNA)和过表达质粒操纵ENO3表达,以及通过siRNA操纵PKM2表达。使用油红O染色和细胞内总胆固醇(TC)和甘油三酯(TG)的测量来评估脂肪积累。评估铁下垂标志物,包括SLC7A11、GPX4、Fe2+和丙二醛(MDA)。利用共免疫沉淀(Co-IP)和免疫荧光检测ENO3和PKM2之间的蛋白-蛋白相互作用。结果:MASLD肝组织中ENO3和PKM2水平明显升高。在ffa处理的THLE-2细胞中沉默ENO3可减少脂肪积累,下调PKM2表达,并降低铁下垂标志物。相反,ENO3过表达促进脂肪积累和铁下垂,而fer1或si-PKM2可减轻这一现象。Co-IP和免疫荧光证实了ENO3和PKM2在THLE-2细胞中的物理相互作用和共定位。结论:ENO3与PKM2相互作用,调节铁下垂,进一步促进MASLD的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Histology and histopathology
Histology and histopathology 生物-病理学
CiteScore
3.90
自引率
0.00%
发文量
232
审稿时长
2 months
期刊介绍: HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信