Microporous polyimine membranes for efficient separation of liquid hydrocarbon mixtures

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-05-22 DOI:10.1126/science.adv6886
Tae Hoon Lee, Marcel Balcik, Zain Ali, Taigyu Joo, Matthew P. Rivera, Ingo Pinnau, Zachary P. Smith
{"title":"Microporous polyimine membranes for efficient separation of liquid hydrocarbon mixtures","authors":"Tae Hoon Lee,&nbsp;Marcel Balcik,&nbsp;Zain Ali,&nbsp;Taigyu Joo,&nbsp;Matthew P. Rivera,&nbsp;Ingo Pinnau,&nbsp;Zachary P. Smith","doi":"10.1126/science.adv6886","DOIUrl":null,"url":null,"abstract":"<div >Interfacial polymerization has been an industrial standard for preparing desalination membranes. Extending the same concept to molecular separation of organic solvents would be a key enabler for the decarbonization of the chemical and petrochemical industries through energy-efficient crude or biocrude oil fractionation. Here, we report a molecular engineering approach based on acid-catalyzed interfacial polymerization for efficient hydrocarbon separation. The design strategies include (i) changing the linkage from amide to imine and (ii) subsequent introduction of shape-persistent units such as triptycene and spirobifluorene. The prepared polyimine membranes exhibit ultrahigh microporosity and enhanced swelling and plasticization resistance compared with conventional polyamide counterparts. These membranes, which feature fast and selective transport of hydrocarbons, including multicomponent and industrially relevant mixtures, outperform commercial and state-of-the-art benchmark membranes.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6749","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adv6886","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial polymerization has been an industrial standard for preparing desalination membranes. Extending the same concept to molecular separation of organic solvents would be a key enabler for the decarbonization of the chemical and petrochemical industries through energy-efficient crude or biocrude oil fractionation. Here, we report a molecular engineering approach based on acid-catalyzed interfacial polymerization for efficient hydrocarbon separation. The design strategies include (i) changing the linkage from amide to imine and (ii) subsequent introduction of shape-persistent units such as triptycene and spirobifluorene. The prepared polyimine membranes exhibit ultrahigh microporosity and enhanced swelling and plasticization resistance compared with conventional polyamide counterparts. These membranes, which feature fast and selective transport of hydrocarbons, including multicomponent and industrially relevant mixtures, outperform commercial and state-of-the-art benchmark membranes.
用于高效分离液态烃混合物的微孔聚酰亚胺膜
界面聚合已成为制备脱盐膜的工业标准。将相同的概念扩展到有机溶剂的分子分离将是通过节能原油或生物原油分馏实现化学和石化工业脱碳的关键推动因素。在这里,我们报告了一种基于酸催化界面聚合的分子工程方法,用于高效的碳氢化合物分离。设计策略包括(i)将连接从酰胺改为亚胺和(ii)随后引入形状持久的单元,如三甲烯和螺比芴。与传统聚酰胺膜相比,制备的聚酰亚胺膜具有超高的微孔率和增强的抗膨胀和抗塑化能力。这些膜的特点是碳氢化合物的快速和选择性运输,包括多组分和工业相关的混合物,优于商业和最先进的基准膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信