Magendiran N, Karthik R, Dhanalakshmi V, Sangeetha S
{"title":"Modified quantum dilated convolutional neural network for cancer prediction using gene expression data.","authors":"Magendiran N, Karthik R, Dhanalakshmi V, Sangeetha S","doi":"10.1080/10255842.2025.2502816","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a modified Quantum Dilated Convolutional neural network (QDCNN) to detect cancer using gene expression data. Primarily, the input gene expression data is taken from a specified dataset. Then, data transformation is done using Adaptive Box-Cox transformation and feature fusion is done by a Deep Neural Network (DNN) with Kulczynski. The refined features are then fed into the modified QDCNN, which effectively predicts cancer. The modified QDCNN attains an accuracy of 90.6%, a True Positive Rate (TPR) of 89.0%, False Negative Rate (FNR) of 0.109, and a Matthews correlation coefficient (MCC) of 89.9% when using the PANCAN dataset.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-13"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2502816","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a modified Quantum Dilated Convolutional neural network (QDCNN) to detect cancer using gene expression data. Primarily, the input gene expression data is taken from a specified dataset. Then, data transformation is done using Adaptive Box-Cox transformation and feature fusion is done by a Deep Neural Network (DNN) with Kulczynski. The refined features are then fed into the modified QDCNN, which effectively predicts cancer. The modified QDCNN attains an accuracy of 90.6%, a True Positive Rate (TPR) of 89.0%, False Negative Rate (FNR) of 0.109, and a Matthews correlation coefficient (MCC) of 89.9% when using the PANCAN dataset.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.