Qianqian Wang , Jiahui Hu , Yueqin Tian , Chao Li , Nenggui Xu , Hongmei Wen , Zulin Dou , Qiuping Ye
{"title":"An experimental study on the optimal timing of modified pharyngeal electrical stimulation for the treatment of dysphagia after stroke in rats","authors":"Qianqian Wang , Jiahui Hu , Yueqin Tian , Chao Li , Nenggui Xu , Hongmei Wen , Zulin Dou , Qiuping Ye","doi":"10.1016/j.brainresbull.2025.111390","DOIUrl":null,"url":null,"abstract":"<div><div>As a novel neuroregulatory technique, modified pharyngeal electrical stimulation (mPES) has demonstrated clinical potential in improving swallowing function. However, there is a notable lack of animal studies exploring this approach. While our previous research validated the optimal parameters for post-stroke dysphagia (PSD) in rats, it did not establish the ideal timing for initiating treatment. This study aimed to identify the optimal time for mPES treatment in the rehabilitation of PSD. Seventy-four Sprague-Dawley (SD) rats were randomly assigned to six groups: a model group, a sham group, and four mPES groups (with treatment initiated at 24 h, 72 h, 5 days, and 7 days post-modeling). All treatment groups received mPES therapy for three consecutive days. Following the intervention, swallowing function was re-evaluated using videofluoroscopic swallowing studies (VFSS), and western blotting analysis was conducted to assess the excitability of sensorimotor cortex. Compared to the model group, all mPES groups exhibited improvements in swallowing function. Among them, the group receiving treatment 72 h post-modeling demonstrated the most significant enhancements (<em>P < 0.05</em>). In addition, The expressions of N-methyl-D-aspartic acid receptor (NMDAR1) and Vesicular glutamate transporter 2 (Vglut2) were higher in the 72-hour group compared to the 7 day group (<em>P < 0.05</em>). This study concluded that mPES treatment was effective when initiated at any of the tested time points-24 h, 72 h, 5 days, or 7 days post-modeling. However, initiating treatment 72-hour post-modeling yielded the greatest improvement in swallowing function in PSD rats.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"227 ","pages":"Article 111390"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025002023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a novel neuroregulatory technique, modified pharyngeal electrical stimulation (mPES) has demonstrated clinical potential in improving swallowing function. However, there is a notable lack of animal studies exploring this approach. While our previous research validated the optimal parameters for post-stroke dysphagia (PSD) in rats, it did not establish the ideal timing for initiating treatment. This study aimed to identify the optimal time for mPES treatment in the rehabilitation of PSD. Seventy-four Sprague-Dawley (SD) rats were randomly assigned to six groups: a model group, a sham group, and four mPES groups (with treatment initiated at 24 h, 72 h, 5 days, and 7 days post-modeling). All treatment groups received mPES therapy for three consecutive days. Following the intervention, swallowing function was re-evaluated using videofluoroscopic swallowing studies (VFSS), and western blotting analysis was conducted to assess the excitability of sensorimotor cortex. Compared to the model group, all mPES groups exhibited improvements in swallowing function. Among them, the group receiving treatment 72 h post-modeling demonstrated the most significant enhancements (P < 0.05). In addition, The expressions of N-methyl-D-aspartic acid receptor (NMDAR1) and Vesicular glutamate transporter 2 (Vglut2) were higher in the 72-hour group compared to the 7 day group (P < 0.05). This study concluded that mPES treatment was effective when initiated at any of the tested time points-24 h, 72 h, 5 days, or 7 days post-modeling. However, initiating treatment 72-hour post-modeling yielded the greatest improvement in swallowing function in PSD rats.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.