Digital SERS Nanostructured Platform for Amplification-free Single-Molecule DNA Detection and Pre-Symptomatic Diagnosis of Kiwifruit Soft Rot.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jinai Chen,Yujiao Wei,Liming Wang,Leyi Chen,Shengnan He,Honglin Liu
{"title":"Digital SERS Nanostructured Platform for Amplification-free Single-Molecule DNA Detection and Pre-Symptomatic Diagnosis of Kiwifruit Soft Rot.","authors":"Jinai Chen,Yujiao Wei,Liming Wang,Leyi Chen,Shengnan He,Honglin Liu","doi":"10.1021/acs.analchem.5c01686","DOIUrl":null,"url":null,"abstract":"We present a digital surface-enhanced Raman spectroscopy (SERS) platform enabling enzyme- and amplification-free single-molecule DNA detection through Poisson distribution-driven quantification and geometrically optimized plasmonic nanostructures. Utilizing high-throughput UV lithography, we fabricated large-area nanopillar arrays (1.5 × 1.5 cm) with tunable heights (500-1300 nm) and periodicities (4-10 μm), addressing key limitations in conventional SERS methods via three innovations: (1) dynamic hotspot generation: Target DNA induces plasmonic dimerization between functionalized gold nanoprobes and Au-capped nanopillars, creating spatially resolved SERS enhancement (1326 cm-1 DTNB signal), (2) digital counting algorithms: Compensate Raman intensity variations by quantifying activated pillars as discrete molecular events, and (3) geometric confinement: Spatial confinement effects enabling statistically robust single-molecule occupancy. This platform achieved 10 fM sensitivity for Diaporthe spp. DNA detection, outperforming PCR-electrophoresis (1 pM) by 2 orders of magnitude. Applied to presymptomatic kiwifruit diagnosis, the system identified pathogen DNA in asymptomatic samples prior to visual symptom development, validated by characteristic DTNB peaks (1326 cm-1) absent in negative controls. The modular design permits multiplexed detection through probe diversification, while the absence of enzymatic steps enables field-deployable operation. By integrating single-molecule statistics with plasmonic signal amplification, this work establishes a robust framework for precision molecular diagnostics, demonstrating transformative potential for agricultural pathogen surveillance and low-abundance biomarker analysis. The technology's batch-producible nanopillar architecture and digital quantification strategy overcome longstanding reproducibility challenges in SERS-based detection, positioning it as a versatile tool for next-generation biosensing applications.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a digital surface-enhanced Raman spectroscopy (SERS) platform enabling enzyme- and amplification-free single-molecule DNA detection through Poisson distribution-driven quantification and geometrically optimized plasmonic nanostructures. Utilizing high-throughput UV lithography, we fabricated large-area nanopillar arrays (1.5 × 1.5 cm) with tunable heights (500-1300 nm) and periodicities (4-10 μm), addressing key limitations in conventional SERS methods via three innovations: (1) dynamic hotspot generation: Target DNA induces plasmonic dimerization between functionalized gold nanoprobes and Au-capped nanopillars, creating spatially resolved SERS enhancement (1326 cm-1 DTNB signal), (2) digital counting algorithms: Compensate Raman intensity variations by quantifying activated pillars as discrete molecular events, and (3) geometric confinement: Spatial confinement effects enabling statistically robust single-molecule occupancy. This platform achieved 10 fM sensitivity for Diaporthe spp. DNA detection, outperforming PCR-electrophoresis (1 pM) by 2 orders of magnitude. Applied to presymptomatic kiwifruit diagnosis, the system identified pathogen DNA in asymptomatic samples prior to visual symptom development, validated by characteristic DTNB peaks (1326 cm-1) absent in negative controls. The modular design permits multiplexed detection through probe diversification, while the absence of enzymatic steps enables field-deployable operation. By integrating single-molecule statistics with plasmonic signal amplification, this work establishes a robust framework for precision molecular diagnostics, demonstrating transformative potential for agricultural pathogen surveillance and low-abundance biomarker analysis. The technology's batch-producible nanopillar architecture and digital quantification strategy overcome longstanding reproducibility challenges in SERS-based detection, positioning it as a versatile tool for next-generation biosensing applications.
猕猴桃软腐病无扩增单分子DNA检测及症状前诊断的数字SERS纳米结构平台。
我们提出了一个数字表面增强拉曼光谱(SERS)平台,通过泊松分布驱动的定量和几何优化的等离子体纳米结构,实现无酶和无扩增的单分子DNA检测。利用高通量紫外光刻技术,我们制造了具有可调高度(500-1300 nm)和周期(4-10 μm)的大面积纳米柱阵列(1.5 × 1.5 cm),通过三个创新解决了传统SERS方法的主要局限性:(1)动态热点生成:目标DNA诱导功能化金纳米探针和au包覆纳米柱之间的等离子体二聚化,创建空间分辨SERS增强(1326 cm-1 DTNB信号);通过将激活柱量化为离散分子事件来补偿拉曼强度变化,以及(3)几何约束:空间约束效应能够实现统计上稳健的单分子占用。该平台对Diaporthe spp. DNA检测的灵敏度达到10 fM,比pcr -电泳(1 pM)高2个数量级。应用于症状前猕猴桃诊断,该系统在视觉症状发展之前鉴定了无症状样本中的病原体DNA,并通过阴性对照中缺失的特征性DTNB峰(1326 cm-1)进行了验证。模块化设计允许通过探针多样化进行多路检测,而无需酶解步骤,可以进行现场部署操作。通过将单分子统计与等离子体信号放大相结合,这项工作为精确分子诊断建立了一个强大的框架,展示了农业病原体监测和低丰度生物标志物分析的变革潜力。该技术可批量生产的纳米柱结构和数字量化策略克服了基于sers检测的长期重复性挑战,将其定位为下一代生物传感应用的通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信