Grace Ross , Wei A. Huang , Jared Reiling , Mengsen Zhang , Jimin Park , Susanne Radtke-Schuller , Joseph Hopfinger , Agnieszka Zuberer , Flavio Frohlich
{"title":"Switching state to engage and sustain attention: Dynamic synchronization of the frontoparietal network","authors":"Grace Ross , Wei A. Huang , Jared Reiling , Mengsen Zhang , Jimin Park , Susanne Radtke-Schuller , Joseph Hopfinger , Agnieszka Zuberer , Flavio Frohlich","doi":"10.1016/j.pneurobio.2025.102777","DOIUrl":null,"url":null,"abstract":"<div><div>Sustained attention (SA) is essential for maintaining focus over time, with disruptions linked to various neurological and psychiatric disorders. The oscillatory dynamics and functional connectivity in the dorsal frontoparietal network (dFPN) are crucial in SA. However, the neuronal mechanisms that control the level of SA, especially in response to heightened attentional demands, remain poorly understood. To examine the role of rhythmic synchronization in the dFPN in SA, we recorded local field potential and single unit activity in ferrets that performed the 5-Choice Serial Reaction Time Task (5-CSRTT) under both low and high attentional load. Under high attentional load, dFPN exhibited a pronounced state shift that corresponded with behavioral changes in the animal. Prior to the onset of the target stimulus, animals transitioned from a stationary state, characterized by frontal theta oscillations and dFPN theta connectivity, to an active exploration state associated with sensory processing. This shift was indexed by a suppression of inhibitory alpha oscillations and an increase in excitatory theta and gamma oscillations in parietal cortex. We further show that dFPN theta connectivity predicts performance fluctuations under high attentional load. Together, these results suggest that behavioral strategies for maintaining SA are tightly linked to neuronal state dynamics in the dFPN. Importantly, these findings identify rhythmic synchronization within the FPN as a potential neural target for novel therapeutic strategies for disrupted attention.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"250 ","pages":"Article 102777"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008225000681","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sustained attention (SA) is essential for maintaining focus over time, with disruptions linked to various neurological and psychiatric disorders. The oscillatory dynamics and functional connectivity in the dorsal frontoparietal network (dFPN) are crucial in SA. However, the neuronal mechanisms that control the level of SA, especially in response to heightened attentional demands, remain poorly understood. To examine the role of rhythmic synchronization in the dFPN in SA, we recorded local field potential and single unit activity in ferrets that performed the 5-Choice Serial Reaction Time Task (5-CSRTT) under both low and high attentional load. Under high attentional load, dFPN exhibited a pronounced state shift that corresponded with behavioral changes in the animal. Prior to the onset of the target stimulus, animals transitioned from a stationary state, characterized by frontal theta oscillations and dFPN theta connectivity, to an active exploration state associated with sensory processing. This shift was indexed by a suppression of inhibitory alpha oscillations and an increase in excitatory theta and gamma oscillations in parietal cortex. We further show that dFPN theta connectivity predicts performance fluctuations under high attentional load. Together, these results suggest that behavioral strategies for maintaining SA are tightly linked to neuronal state dynamics in the dFPN. Importantly, these findings identify rhythmic synchronization within the FPN as a potential neural target for novel therapeutic strategies for disrupted attention.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.