IGZO 2T1C DRAM With Low Operation Voltage and High Current Window

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Wendong Lu;Kaifei Chen;Menggan Liu;Fuxi Liao;Zijing Wu;Naide Mao;Zihan Li;Xuanming Zhang;Congyan Lu;Jiebin Niu;Bok-Moon Kang;Jing-Hong Shi;Xie-Shuai Wu;Gui-Lei Wang;Zhengyong Zhu;Jiawei Wang;Lingfei Wang;Di Geng;Nianduan Lu;Guanhua Yang;Chao Zhao;Ling Li
{"title":"IGZO 2T1C DRAM With Low Operation Voltage and High Current Window","authors":"Wendong Lu;Kaifei Chen;Menggan Liu;Fuxi Liao;Zijing Wu;Naide Mao;Zihan Li;Xuanming Zhang;Congyan Lu;Jiebin Niu;Bok-Moon Kang;Jing-Hong Shi;Xie-Shuai Wu;Gui-Lei Wang;Zhengyong Zhu;Jiawei Wang;Lingfei Wang;Di Geng;Nianduan Lu;Guanhua Yang;Chao Zhao;Ling Li","doi":"10.1109/JEDS.2025.3566162","DOIUrl":null,"url":null,"abstract":"In this work, we propose and experimentally demonstrate a novel IGZO 2T1C cell. Novel bit-cell applies read-word-line to the capacitor terminal and utilize the coupling effect of the capacitor to achieve storage node (SN) voltage modulation. By this design, a larger current window can be achieved by biasing the read transistor to the region with the steepest subthreshold slope. Through optimizing the gate dielectric thickness, DG IGZO transistor of <inline-formula> <tex-math>${\\mathrm { L}}_{\\mathrm {CH}}$ </tex-math></inline-formula>=50 nm achieves ultra-low subthreshold slope of 63.9 mV/dec. Based on optimized devices, the implementation of DRAM features an ultra-high current window (Idata‘1’/Idata‘0’) of <inline-formula> <tex-math>$\\sim {\\mathrm {10}}^{\\mathrm {3}}$ </tex-math></inline-formula> at ultra-low write voltage of 0.2 V. Furthermore, the proposed novel 2T1C bit-cell provides a more reliable gate-controlled read scheme. This work paves the forward way for low voltage and reliable sensing IGZO DRAM application.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"444-449"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981849","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10981849/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose and experimentally demonstrate a novel IGZO 2T1C cell. Novel bit-cell applies read-word-line to the capacitor terminal and utilize the coupling effect of the capacitor to achieve storage node (SN) voltage modulation. By this design, a larger current window can be achieved by biasing the read transistor to the region with the steepest subthreshold slope. Through optimizing the gate dielectric thickness, DG IGZO transistor of ${\mathrm { L}}_{\mathrm {CH}}$ =50 nm achieves ultra-low subthreshold slope of 63.9 mV/dec. Based on optimized devices, the implementation of DRAM features an ultra-high current window (Idata‘1’/Idata‘0’) of $\sim {\mathrm {10}}^{\mathrm {3}}$ at ultra-low write voltage of 0.2 V. Furthermore, the proposed novel 2T1C bit-cell provides a more reliable gate-controlled read scheme. This work paves the forward way for low voltage and reliable sensing IGZO DRAM application.
具有低工作电压和大电流窗的IGZO 2T1C DRAM
在这项工作中,我们提出并实验证明了一种新的IGZO 2T1C细胞。新型位单元在电容端采用读字线,利用电容的耦合效应实现存储节点(SN)电压调制。通过这种设计,可以通过将读晶体管偏置到具有最陡的亚阈值斜率的区域来实现更大的电流窗口。通过优化栅极介电厚度,${\mathrm {L}}_{\mathrm {CH}}$ =50 nm的DG IGZO晶体管实现了63.9 mV/dec的超低亚阈值斜率。基于优化的器件,实现的DRAM在0.2 V的超低写电压下具有$\sim {\ mathm {10}}^{\ mathm{3}}$的超高电流窗(Idata ' 1 ' /Idata ' 0 ')。此外,所提出的新型2T1C位单元提供了更可靠的门控读取方案。该工作为低电压可靠传感IGZO DRAM的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信