Numerical ranges are shadows

IF 1 3区 数学 Q1 MATHEMATICS
Alan Wiggins , Edwin Xie
{"title":"Numerical ranges are shadows","authors":"Alan Wiggins ,&nbsp;Edwin Xie","doi":"10.1016/j.laa.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new perspective on the numerical range of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices as varying “shadows” of an embedding of <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. This framework gives us geometric proofs of the elliptic range theorem and the Toeplitz-Hausdorff theorem. We apply this perspective to the Berezin Range or linear operators on finite-dimensional supbspaces of the Hardy-Hilbert space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>D</mi><mo>)</mo></math></span> of the open unit disk <span><math><mi>D</mi></math></span>. We characterize the convexity of the Berezin range for two-dimensional subspaces and show that uncountably many unitary conjugates of a given operator are needed to “cover” the numerical range using Berezin ranges if the boundary of the numerical range is not smooth.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 81-100"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001971","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new perspective on the numerical range of n×n matrices as varying “shadows” of an embedding of CPn1. This framework gives us geometric proofs of the elliptic range theorem and the Toeplitz-Hausdorff theorem. We apply this perspective to the Berezin Range or linear operators on finite-dimensional supbspaces of the Hardy-Hilbert space H2(D) of the open unit disk D. We characterize the convexity of the Berezin range for two-dimensional subspaces and show that uncountably many unitary conjugates of a given operator are needed to “cover” the numerical range using Berezin ranges if the boundary of the numerical range is not smooth.
数值范围是阴影
我们提出了一种新的观点,认为n×n矩阵的数值范围是CPn−1嵌入的不同“阴影”。这个框架给出了椭圆范围定理和Toeplitz-Hausdorff定理的几何证明。我们将这一观点应用于开放单位盘D的Hardy-Hilbert空间H2(D)有限维子空间上的Berezin值域或线性算子。我们刻画了二维子空间的Berezin值域的凸性,并表明如果数值值域的边界不光滑,则需要给定算子的无数个幺正共轭来“覆盖”数值值域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信