Computational discovery of metallic MBenes for two-dimensional semiconductor contacts approaching the quantum limit

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Meng Li, Dan Cao, Dabao Xie, Meiying Gong, Congmin Zhang, Tao You, Jing Zhou, Xiaoshuang Chen, Haibo Shu
{"title":"Computational discovery of metallic MBenes for two-dimensional semiconductor contacts approaching the quantum limit","authors":"Meng Li, Dan Cao, Dabao Xie, Meiying Gong, Congmin Zhang, Tao You, Jing Zhou, Xiaoshuang Chen, Haibo Shu","doi":"10.1038/s41524-025-01640-3","DOIUrl":null,"url":null,"abstract":"<p>The realization of ultralow-resistance contacts in two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) is pivotal for advancing transistor scaling toward the end of technology roadmap. In this work, by means of high-throughput first-principles calculations, we identify that highly stable two-dimensional metallic MBenes with large abundance of density of states are potential for achieving low-resistance MBene-TMD contacts at the quantum limit. We reveal that local built-in electric field at MBene-MoS<sub>2</sub> interfaces driven by interfacial polarization enables tunable band shift of MoS<sub>2</sub> channel, which allows for obtaining p-type Ohmic contact. The strong van der Waals interactions between MBenes and MoS<sub>2</sub> induces a delicate balance between the Fermi-level pinning and carrier tunneling efficiency, resulting in ultralow contact resistance down to 41.6 Ω μm. The contact performance of screened Nb<sub>2</sub>BO<sub>2</sub>-MoS<sub>2</sub> and Nb<sub>2</sub>B(OH)<sub>2</sub>-MoS<sub>2</sub> junctions can be competed with previous records using semimetals Sb and Bi as the contacts of MoS<sub>2</sub> devices.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01640-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The realization of ultralow-resistance contacts in two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) is pivotal for advancing transistor scaling toward the end of technology roadmap. In this work, by means of high-throughput first-principles calculations, we identify that highly stable two-dimensional metallic MBenes with large abundance of density of states are potential for achieving low-resistance MBene-TMD contacts at the quantum limit. We reveal that local built-in electric field at MBene-MoS2 interfaces driven by interfacial polarization enables tunable band shift of MoS2 channel, which allows for obtaining p-type Ohmic contact. The strong van der Waals interactions between MBenes and MoS2 induces a delicate balance between the Fermi-level pinning and carrier tunneling efficiency, resulting in ultralow contact resistance down to 41.6 Ω μm. The contact performance of screened Nb2BO2-MoS2 and Nb2B(OH)2-MoS2 junctions can be competed with previous records using semimetals Sb and Bi as the contacts of MoS2 devices.

Abstract Image

接近量子极限的二维半导体触点金属MBenes的计算发现
在二维半导体(如过渡金属二硫族化物(TMDs))中实现超低电阻触点对于推进晶体管的规模化发展至关重要。在这项工作中,通过高通量第一性原理计算,我们确定了具有大量态密度的高度稳定的二维金属MBenes在量子极限下实现低电阻MBene-TMD接触的潜力。我们发现,在界面极化驱动下,MBene-MoS2界面上的局部内置电场使MoS2通道的带移可调,从而可以获得p型欧姆接触。MBenes和MoS2之间强烈的范德华相互作用在费米能级钉钉和载流子隧道效率之间产生了微妙的平衡,导致超低的接触电阻低至41.6 Ω μm。筛选的Nb2BO2-MoS2和Nb2B(OH)2-MoS2结的接触性能可以与以前使用半金属Sb和Bi作为MoS2器件的接触性能相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信