{"title":"Neuroferroptosis in health and diseases","authors":"Peng Lei, Tara Walker, Scott Ayton","doi":"10.1038/s41583-025-00930-5","DOIUrl":null,"url":null,"abstract":"<p>Ferroptosis is a type of cell death process defined by iron-dependent peroxidation of phospholipids leading to the destruction of cellular membranes and death of the cell. Ferroptosis occurs throughout the body, but a considerable research focus on ferroptosis in the brain — neuroferroptosis — has been driven by the rich lipid and iron content of the brain as well as its high oxygen consumption. Neurons also have an exceptionally large surface area and metabolic demand, which necessitates specific mechanisms (such as lipid antioxidants) to engage constantly to protect the plasma membrane against lipid peroxidation. Ferroptosis has been extensively linked to neurodegeneration and ischaemia and is increasingly implicated in physiological processes such as neuronal reprogramming. Astrocytes provide metabolic support to neurons, enabling them to defend against ferroptosis, yet ferroptotic signals in microglia can propagate damage to astrocytes and neurons, highlighting the complex intercellular (patho)physiology of neuroferroptosis.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"32 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00930-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis is a type of cell death process defined by iron-dependent peroxidation of phospholipids leading to the destruction of cellular membranes and death of the cell. Ferroptosis occurs throughout the body, but a considerable research focus on ferroptosis in the brain — neuroferroptosis — has been driven by the rich lipid and iron content of the brain as well as its high oxygen consumption. Neurons also have an exceptionally large surface area and metabolic demand, which necessitates specific mechanisms (such as lipid antioxidants) to engage constantly to protect the plasma membrane against lipid peroxidation. Ferroptosis has been extensively linked to neurodegeneration and ischaemia and is increasingly implicated in physiological processes such as neuronal reprogramming. Astrocytes provide metabolic support to neurons, enabling them to defend against ferroptosis, yet ferroptotic signals in microglia can propagate damage to astrocytes and neurons, highlighting the complex intercellular (patho)physiology of neuroferroptosis.
期刊介绍:
Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.