Neuroferroptosis in health and diseases

IF 34.7 1区 医学 Q1 Neuroscience
Peng Lei, Tara Walker, Scott Ayton
{"title":"Neuroferroptosis in health and diseases","authors":"Peng Lei, Tara Walker, Scott Ayton","doi":"10.1038/s41583-025-00930-5","DOIUrl":null,"url":null,"abstract":"<p>Ferroptosis is a type of cell death process defined by iron-dependent peroxidation of phospholipids leading to the destruction of cellular membranes and death of the cell. Ferroptosis occurs throughout the body, but a considerable research focus on ferroptosis in the brain — neuroferroptosis — has been driven by the rich lipid and iron content of the brain as well as its high oxygen consumption. Neurons also have an exceptionally large surface area and metabolic demand, which necessitates specific mechanisms (such as lipid antioxidants) to engage constantly to protect the plasma membrane against lipid peroxidation. Ferroptosis has been extensively linked to neurodegeneration and ischaemia and is increasingly implicated in physiological processes such as neuronal reprogramming. Astrocytes provide metabolic support to neurons, enabling them to defend against ferroptosis, yet ferroptotic signals in microglia can propagate damage to astrocytes and neurons, highlighting the complex intercellular (patho)physiology of neuroferroptosis.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"32 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00930-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is a type of cell death process defined by iron-dependent peroxidation of phospholipids leading to the destruction of cellular membranes and death of the cell. Ferroptosis occurs throughout the body, but a considerable research focus on ferroptosis in the brain — neuroferroptosis — has been driven by the rich lipid and iron content of the brain as well as its high oxygen consumption. Neurons also have an exceptionally large surface area and metabolic demand, which necessitates specific mechanisms (such as lipid antioxidants) to engage constantly to protect the plasma membrane against lipid peroxidation. Ferroptosis has been extensively linked to neurodegeneration and ischaemia and is increasingly implicated in physiological processes such as neuronal reprogramming. Astrocytes provide metabolic support to neurons, enabling them to defend against ferroptosis, yet ferroptotic signals in microglia can propagate damage to astrocytes and neurons, highlighting the complex intercellular (patho)physiology of neuroferroptosis.

Abstract Image

健康和疾病中的神经下垂
铁死亡是一种细胞死亡过程,由磷脂的铁依赖性过氧化作用导致细胞膜破坏和细胞死亡。铁下垂发生在全身,但大量的研究集中在脑铁下垂-神经铁下垂-已由大脑丰富的脂质和铁含量以及其高氧消耗驱动。神经元还具有特别大的表面积和代谢需求,这就需要特定的机制(如脂质抗氧化剂)不断参与,以保护质膜免受脂质过氧化。铁下垂已被广泛地与神经退行性变和缺血联系在一起,并且越来越多地与神经重编程等生理过程有关。星形胶质细胞为神经元提供代谢支持,使它们能够防御铁下垂,然而小胶质细胞中的铁下垂信号可以传播对星形胶质细胞和神经元的损伤,突出了神经铁下垂的复杂细胞间(病理)生理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Neuroscience
Nature Reviews Neuroscience 医学-神经科学
CiteScore
35.00
自引率
0.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信