Comparing Puncture-Detection Approaches for Manual Needle Insertions Through the Parietal Pleura

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Rachael L’Orsa;Kourosh Zareinia;Garnette R. Sutherland;David Westwick;Katherine J. Kuchenbecker
{"title":"Comparing Puncture-Detection Approaches for Manual Needle Insertions Through the Parietal Pleura","authors":"Rachael L’Orsa;Kourosh Zareinia;Garnette R. Sutherland;David Westwick;Katherine J. Kuchenbecker","doi":"10.1109/TMRB.2025.3556556","DOIUrl":null,"url":null,"abstract":"Tube thoracostomy (chest tube insertion) is a surgical procedure that treats pneumothorax, a potentially life-threatening condition where air accumulates between the chest wall and the lungs. The literature reports high complication rates for this procedure, including accidental fatality due to poor manual depth control during tool insertion. We hypothesize that an instrumented needle-holder could help operators recognize pleural puncture and improve depth control, and we present a puncture-detection experiment that contributes toward this goal. An operator manually inserted a bevel-tip needle into ex vivo porcine ribs and through the parietal pleura via a sensorized percutaneous device that records position, force, and videos. We use this rich dataset of 63 insertions to thoroughly test four previously published data-driven puncture-detection (DDPD) algorithms against two new real-time algorithms: a custom recursive digital filter with coefficients optimized for our application, and a difference equation that compares standard deviations between adjacent sliding windows. Our algorithms achieve a precision (true positives over total identified punctures) of 23% and 22%, respectively, while the precision of existing DDPD algorithms ranges from 0% to 21%. Despite these performance improvements, our results show the limitations of DDPD algorithms and motivate new methods for detecting pleural membrane punctures in thoracostomy.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"455-468"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947219","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10947219/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tube thoracostomy (chest tube insertion) is a surgical procedure that treats pneumothorax, a potentially life-threatening condition where air accumulates between the chest wall and the lungs. The literature reports high complication rates for this procedure, including accidental fatality due to poor manual depth control during tool insertion. We hypothesize that an instrumented needle-holder could help operators recognize pleural puncture and improve depth control, and we present a puncture-detection experiment that contributes toward this goal. An operator manually inserted a bevel-tip needle into ex vivo porcine ribs and through the parietal pleura via a sensorized percutaneous device that records position, force, and videos. We use this rich dataset of 63 insertions to thoroughly test four previously published data-driven puncture-detection (DDPD) algorithms against two new real-time algorithms: a custom recursive digital filter with coefficients optimized for our application, and a difference equation that compares standard deviations between adjacent sliding windows. Our algorithms achieve a precision (true positives over total identified punctures) of 23% and 22%, respectively, while the precision of existing DDPD algorithms ranges from 0% to 21%. Despite these performance improvements, our results show the limitations of DDPD algorithms and motivate new methods for detecting pleural membrane punctures in thoracostomy.
胸膜壁层手工穿刺检测方法的比较
气管开胸术(胸腔插管)是一种治疗气胸的外科手术,气胸是一种潜在的危及生命的疾病,空气积聚在胸壁和肺部之间。文献报道了该手术的高并发症发生率,包括由于插入工具时人工深度控制不佳而导致的意外死亡。我们假设一个仪器化的持针器可以帮助操作员识别胸膜穿刺并改善深度控制,我们提出了一个穿刺检测实验,有助于实现这一目标。操作者手动将一根斜尖针插入离体猪肋骨,并通过一个可记录位置、力度和视频的经皮感应装置穿过胸膜壁层。我们使用这个包含63个插入的丰富数据集来彻底测试四种先前发布的数据驱动刺孔检测(DDPD)算法与两种新的实时算法:一种是针对我们的应用优化系数的自定义递归数字滤波器,另一种是比较相邻滑动窗口之间标准差的差分方程。我们的算法分别实现了23%和22%的精度(总识别穿刺的真阳性),而现有DDPD算法的精度范围为0%到21%。尽管性能有所提高,但我们的研究结果显示了DDPD算法的局限性,并激发了在开胸手术中检测胸膜穿刺的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信