Development and Validation of a Robot-Assisted Retraction System for Orthopedic Surgery

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Xiaolong Zhu;Yuzhen Jiang;Rui He;Changsheng Li;Xingguang Duan
{"title":"Development and Validation of a Robot-Assisted Retraction System for Orthopedic Surgery","authors":"Xiaolong Zhu;Yuzhen Jiang;Rui He;Changsheng Li;Xingguang Duan","doi":"10.1109/TMRB.2025.3550648","DOIUrl":null,"url":null,"abstract":"Tissue retraction, one of the basic steps in orthopedic surgery, is related to the smooth entry of surgical instruments into the surgical area and provides a clear surgical perspective for surgeons. This work introduces the first robot-assisted retraction system (RARS) specifically designed for orthopedic surgery. The RARS allows surgeons to set a safe retraction force and roughly set the posture of the retraction device at the beginning. To ensure that the RARS automatically completes the task in a safe manner, we propose a safety control framework that employs iterative enhanced control based on interaction model to handle the retraction interaction problem, and avoids interference with the operation of surgeons through null-space optimization. First, we performed a performance test of the RARS on a phantom model, and the results showed that the maximum tracking error of the retraction force was 0.51N, demonstrating satisfactory tracking performance. Second, we validated the effectiveness of null-space optimization by observing the evolution of joint positions. Finally, we conducted experiments on in-vivo animal and the results showed that the proposed RARS exhibited superior performance in safe retraction force tracking accuracy and tissue damage compared to traditional manual retractions.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"492-501"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924290/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue retraction, one of the basic steps in orthopedic surgery, is related to the smooth entry of surgical instruments into the surgical area and provides a clear surgical perspective for surgeons. This work introduces the first robot-assisted retraction system (RARS) specifically designed for orthopedic surgery. The RARS allows surgeons to set a safe retraction force and roughly set the posture of the retraction device at the beginning. To ensure that the RARS automatically completes the task in a safe manner, we propose a safety control framework that employs iterative enhanced control based on interaction model to handle the retraction interaction problem, and avoids interference with the operation of surgeons through null-space optimization. First, we performed a performance test of the RARS on a phantom model, and the results showed that the maximum tracking error of the retraction force was 0.51N, demonstrating satisfactory tracking performance. Second, we validated the effectiveness of null-space optimization by observing the evolution of joint positions. Finally, we conducted experiments on in-vivo animal and the results showed that the proposed RARS exhibited superior performance in safe retraction force tracking accuracy and tissue damage compared to traditional manual retractions.
骨科手术机器人辅助牵收系统的开发与验证
组织回缩是骨科手术的基本步骤之一,它关系到手术器械能否顺利进入手术区域,为外科医生提供清晰的手术视角。这项工作介绍了第一个专门为骨科手术设计的机器人辅助牵伸系统(RARS)。RARS允许外科医生设定一个安全的牵开力,并在开始时大致设定牵开装置的姿势。为了保证RARS自动安全地完成任务,我们提出了一种安全控制框架,该框架采用基于交互模型的迭代增强控制来处理缩回交互问题,并通过零空间优化避免对外科医生手术的干扰。首先,我们在一个仿真模型上对RARS进行了性能测试,结果表明,RARS的最大回收力跟踪误差为0.51N,具有良好的跟踪性能。其次,通过观察关节位置的演变,验证了零空间优化的有效性。最后,我们在动物体内进行了实验,结果表明,与传统的手动牵开相比,所提出的RARS在安全牵开力跟踪准确性和组织损伤方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信