Interpretable machine learning for atomic scale magnetic anisotropy in quantum materials

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jan Navrátil, Rafał Topolnicki, Michal Otyepka, Piotr Błoński
{"title":"Interpretable machine learning for atomic scale magnetic anisotropy in quantum materials","authors":"Jan Navrátil, Rafał Topolnicki, Michal Otyepka, Piotr Błoński","doi":"10.1038/s41524-025-01637-y","DOIUrl":null,"url":null,"abstract":"<p>The rising demand for digital storage and environmental concerns necessitate ultra-high-density, energy-efficient solutions. Atomic-scale magnets (ASMs) based on transition metal (TM) dimers on defective graphene exhibit promising magnetic anisotropy energy (MAE) values, providing a robust barrier against magnetization reversal. However, identifying optimal TM-substrate configurations is challenging when relying solely on density functional theory (DFT) calculations with spin-orbit coupling. To address this, we developed a machine learning (ML) model trained on scalar-relativistic DFT data using a tree-based gradient boosting approach. Our model implicitly captures key physical interactions from second-order perturbation theory, ensuring reliable MAE predictions for systems beyond the training set. By bridging computational efficiency with interpretability, this work contributes to the development of ASMs for spintronics and quantum materials, offering a pathway to next-generation data storage technologies.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"30 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01637-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rising demand for digital storage and environmental concerns necessitate ultra-high-density, energy-efficient solutions. Atomic-scale magnets (ASMs) based on transition metal (TM) dimers on defective graphene exhibit promising magnetic anisotropy energy (MAE) values, providing a robust barrier against magnetization reversal. However, identifying optimal TM-substrate configurations is challenging when relying solely on density functional theory (DFT) calculations with spin-orbit coupling. To address this, we developed a machine learning (ML) model trained on scalar-relativistic DFT data using a tree-based gradient boosting approach. Our model implicitly captures key physical interactions from second-order perturbation theory, ensuring reliable MAE predictions for systems beyond the training set. By bridging computational efficiency with interpretability, this work contributes to the development of ASMs for spintronics and quantum materials, offering a pathway to next-generation data storage technologies.

Abstract Image

量子材料中原子尺度磁各向异性的可解释机器学习
不断增长的数字存储需求和环境问题需要超高密度、节能的解决方案。基于缺陷石墨烯上过渡金属二聚体的原子级磁体(asm)表现出有希望的磁各向异性能(MAE)值,提供了一个强大的磁化反转屏障。然而,当仅仅依赖于自旋轨道耦合的密度泛函理论(DFT)计算时,确定最佳tm -衬底结构是具有挑战性的。为了解决这个问题,我们开发了一个机器学习(ML)模型,该模型使用基于树的梯度增强方法训练标量相对论DFT数据。我们的模型隐含地捕获了二阶摄动理论中的关键物理相互作用,确保了对超出训练集的系统的可靠MAE预测。通过将计算效率与可解释性相结合,这项工作有助于自旋电子学和量子材料的asm的发展,为下一代数据存储技术提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信