Isaac P Witte, George D Lampe, Simon Eitzinger, Shannon M Miller, Kiara N Berríos, Amber N McElroy, Rebeca T King, Olivia G Stringham, Diego R Gelsinger, Phuc Leo H Vo, Albert T Chen, Jakub Tolar, Mark J Osborn, Samuel H Sternberg, David R Liu
{"title":"Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase.","authors":"Isaac P Witte, George D Lampe, Simon Eitzinger, Shannon M Miller, Kiara N Berríos, Amber N McElroy, Rebeca T King, Olivia G Stringham, Diego R Gelsinger, Phuc Leo H Vo, Albert T Chen, Jakub Tolar, Mark J Osborn, Samuel H Sternberg, David R Liu","doi":"10.1126/science.adt5199","DOIUrl":null,"url":null,"abstract":"<p><p>Programmable gene integration in human cells has the potential to enable mutation-agnostic treatments for loss-of-function genetic diseases and facilitate many applications in the life sciences. CRISPR-associated transposases (CASTs) catalyze RNA-guided DNA integration but thus far demonstrate minimal activity in human cells. Using phage-assisted continuous evolution (PACE), we generated CAST variants with >200-fold average improved integration activity. The evolved CAST system (evoCAST) achieves ~10 to 30% integration efficiencies of kilobase-size DNA cargoes in human cells across 14 tested genomic target sites, including safe harbor loci, sites used for immunotherapy, and genes implicated in loss-of-function diseases, with undetected indels and low levels of off-target integration. Collectively, our findings establish a platform for the laboratory evolution of CASTs and advance a versatile system for programmable gene integration in living systems.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6748","pages":"eadt5199"},"PeriodicalIF":44.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adt5199","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Programmable gene integration in human cells has the potential to enable mutation-agnostic treatments for loss-of-function genetic diseases and facilitate many applications in the life sciences. CRISPR-associated transposases (CASTs) catalyze RNA-guided DNA integration but thus far demonstrate minimal activity in human cells. Using phage-assisted continuous evolution (PACE), we generated CAST variants with >200-fold average improved integration activity. The evolved CAST system (evoCAST) achieves ~10 to 30% integration efficiencies of kilobase-size DNA cargoes in human cells across 14 tested genomic target sites, including safe harbor loci, sites used for immunotherapy, and genes implicated in loss-of-function diseases, with undetected indels and low levels of off-target integration. Collectively, our findings establish a platform for the laboratory evolution of CASTs and advance a versatile system for programmable gene integration in living systems.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.