Oystein Bjelland, Bismi Rasheed, Intissar Cherif, Andreas F Dalen, Amine Chellali, Martin Steinert, Robin T Bye
{"title":"Haptic Rendering Using Reality-Based Force Profiles in Surgical Simulation.","authors":"Oystein Bjelland, Bismi Rasheed, Intissar Cherif, Andreas F Dalen, Amine Chellali, Martin Steinert, Robin T Bye","doi":"10.1109/TOH.2025.3570810","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel method for simplifying kinesthetic haptic rendering of complex contact interactions in arthroscopic surgery training simulators using reality-based force profiles. We demonstrate continuous kinesthetic feedback for applications to arthroscopic knee portal creation and diagnostic meniscus examination. This involves measuring characteristic force profiles in ex vivo experiments, simulator implementation in SOFA, and performing user validation experiments. When comparing the method with linear-elastic-based haptic feedback for meniscus stiffness discrimination, novices had difference thresholds of 1.80 MPa (linear-elastic) and 1.47 MPa (reality-based), while experts showed thresholds of 0.99 MPa and 1.39 MPa, respectively, indicating finer sensitivity among experts. Experts also used significantly less force (${\\mathit{p}}\\mathbf {< 0.05}$) and had shorter decision times (${\\mathit{p}}\\mathbf {< 0.05}$) than novices across both methods, indicating construct validity. Although kinesthetic feedback was verified with ex vivo experiments for portal creation, user validation was here inconclusive due to minor inconsistencies in the integration of visual and haptic feedback. Limitations include triggering material removal via instrument penetration instead of haptic force limits, as well as omitting contact vibrations. The method gives only a minor reduction in computation speed. Examples are available on GitHub.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3570810","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel method for simplifying kinesthetic haptic rendering of complex contact interactions in arthroscopic surgery training simulators using reality-based force profiles. We demonstrate continuous kinesthetic feedback for applications to arthroscopic knee portal creation and diagnostic meniscus examination. This involves measuring characteristic force profiles in ex vivo experiments, simulator implementation in SOFA, and performing user validation experiments. When comparing the method with linear-elastic-based haptic feedback for meniscus stiffness discrimination, novices had difference thresholds of 1.80 MPa (linear-elastic) and 1.47 MPa (reality-based), while experts showed thresholds of 0.99 MPa and 1.39 MPa, respectively, indicating finer sensitivity among experts. Experts also used significantly less force (${\mathit{p}}\mathbf {< 0.05}$) and had shorter decision times (${\mathit{p}}\mathbf {< 0.05}$) than novices across both methods, indicating construct validity. Although kinesthetic feedback was verified with ex vivo experiments for portal creation, user validation was here inconclusive due to minor inconsistencies in the integration of visual and haptic feedback. Limitations include triggering material removal via instrument penetration instead of haptic force limits, as well as omitting contact vibrations. The method gives only a minor reduction in computation speed. Examples are available on GitHub.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.