Cong Luo, Chaorui Qiu, Yang Li, Mingwen Wang, Yi Quan and Zhuo Xu
{"title":"The effect of machining-generated residual stress on the properties of single crystal piezoelectric layers in high-frequency ultrasonic transducers†","authors":"Cong Luo, Chaorui Qiu, Yang Li, Mingwen Wang, Yi Quan and Zhuo Xu","doi":"10.1039/D5TC00779H","DOIUrl":null,"url":null,"abstract":"<p >During the mechanical thinning process for preparing ultrathin (approximately 100 μm) piezoelectric single crystals (SC) for high-frequency ultrasonic transducers, a significant degradation in performance has been observed in Pb(In<small><sub>1/2</sub></small>Nb<small><sub>1/2</sub></small>)O<small><sub>3</sub></small>–Pb(Mg<small><sub>1/3</sub></small>Nb<small><sub>2/3</sub></small>)O<small><sub>3</sub></small>–PbTiO<small><sub>3</sub></small> (PIN–PMN–PT) SC sheets. Experimental results indicate that this degradation is primarily due to machining-generated residual stress during the thinning process. Upon the removal of mechanical force, residual stress is induced within the PIN–PMN–PT SC sheet, leading to a decline in the dielectric, piezoelectric, and electromechanical properties. The residual stress significantly impacts both external surface roughness and internal domain structure of the SC sheet, directly affecting its electrical performance. Additionally, the residual stress exacerbates electrical fatigue in the PIN–PMN–PT SC sheet during practical use. To address these issues, high-temperature annealing following mechanical thinning has been demonstrated to effectively eliminate or minimize residual stress, thereby substantially mitigating its adverse effects. This process enhances the electrical properties, thermal stability, and resistance to electrical fatigue of the SC sheet. This study offers insights into optimizing the performance optimization of high-performance SC sheets for improving the performance of high-frequency transducers.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 19","pages":" 9483-9493"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00779h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During the mechanical thinning process for preparing ultrathin (approximately 100 μm) piezoelectric single crystals (SC) for high-frequency ultrasonic transducers, a significant degradation in performance has been observed in Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) SC sheets. Experimental results indicate that this degradation is primarily due to machining-generated residual stress during the thinning process. Upon the removal of mechanical force, residual stress is induced within the PIN–PMN–PT SC sheet, leading to a decline in the dielectric, piezoelectric, and electromechanical properties. The residual stress significantly impacts both external surface roughness and internal domain structure of the SC sheet, directly affecting its electrical performance. Additionally, the residual stress exacerbates electrical fatigue in the PIN–PMN–PT SC sheet during practical use. To address these issues, high-temperature annealing following mechanical thinning has been demonstrated to effectively eliminate or minimize residual stress, thereby substantially mitigating its adverse effects. This process enhances the electrical properties, thermal stability, and resistance to electrical fatigue of the SC sheet. This study offers insights into optimizing the performance optimization of high-performance SC sheets for improving the performance of high-frequency transducers.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors