Design and Development of Polarization-Enhanced E-Mode GaN p-FET and Complementary Logic (CL) Circuits

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Teng Li;Jingjing Yu;Sihang Liu;Yunhong Lao;Jiawei Cui;Hengyuan Qi;Junjie Yang;Han Yang;Xuelin Yang;Maojun Wang;Yamin Zhang;Shiwei Feng;Bo Shen;Meng Zhang;Jin Wei
{"title":"Design and Development of Polarization-Enhanced E-Mode GaN p-FET and Complementary Logic (CL) Circuits","authors":"Teng Li;Jingjing Yu;Sihang Liu;Yunhong Lao;Jiawei Cui;Hengyuan Qi;Junjie Yang;Han Yang;Xuelin Yang;Maojun Wang;Yamin Zhang;Shiwei Feng;Bo Shen;Meng Zhang;Jin Wei","doi":"10.1109/TED.2025.3556047","DOIUrl":null,"url":null,"abstract":"The low ionization rate of Mg acceptors in the p-gallium nitride (GaN) layer is a critical factor accounting for the low current density of E-mode GaN p-FETs. In this work, polarization-enhanced technology was adopted to enhance the ionization rate of the p-GaN channel. High-performance recessed-gate E-mode GaN p-FETs were fabricated to enable GaN complementary logic (CL) circuits. During fabrication, the channel thickness (<inline-formula> <tex-math>${t}_{x}$ </tex-math></inline-formula>) is found to be a critical parameter that influences the device metrics. With a decrease in <inline-formula> <tex-math>${t}_{x}$ </tex-math></inline-formula> (i.e., larger recess depth), a more negative threshold voltage (<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>) is achieved; however, the trade-off is an increase in <inline-formula> <tex-math>${R}_{\\text {on}}$ </tex-math></inline-formula>. The E-mode GaN p-FET with <inline-formula> <tex-math>${t}_{x} =32$ </tex-math></inline-formula> nm exhibits a <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of −1.1 V, a high current density of 17.7 mA/mm, a high <inline-formula> <tex-math>${I}_{\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {off}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6.9\\times 10^{{7}}$ </tex-math></inline-formula>, and a low subthreshold swing (SS) of 93 mV/dec. Furthermore, an E-mode n-channel p-GaN gate high electron mobility transistor (HEMT) was fabricated on the same epi-wafer, exhibiting a <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of 1.3 V and an <inline-formula> <tex-math>${R}_{\\text {on}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6~\\mathrm {\\Omega \\cdot }$ </tex-math></inline-formula>mm. Finally, a GaN CL inverter was fabricated and demonstrated under <inline-formula> <tex-math>${V}_{\\text {DD}} =6$ </tex-math></inline-formula> V. Rail-to-rail voltage swing and low static power consumption were both achieved. This work further validates the feasibility of GaN CL integrated circuits and power integrated circuits (PICs).","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2259-2264"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960615/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The low ionization rate of Mg acceptors in the p-gallium nitride (GaN) layer is a critical factor accounting for the low current density of E-mode GaN p-FETs. In this work, polarization-enhanced technology was adopted to enhance the ionization rate of the p-GaN channel. High-performance recessed-gate E-mode GaN p-FETs were fabricated to enable GaN complementary logic (CL) circuits. During fabrication, the channel thickness ( ${t}_{x}$ ) is found to be a critical parameter that influences the device metrics. With a decrease in ${t}_{x}$ (i.e., larger recess depth), a more negative threshold voltage ( ${V}_{\text {th}}$ ) is achieved; however, the trade-off is an increase in ${R}_{\text {on}}$ . The E-mode GaN p-FET with ${t}_{x} =32$ nm exhibits a ${V}_{\text {th}}$ of −1.1 V, a high current density of 17.7 mA/mm, a high ${I}_{\text {on}}$ / ${I}_{\text {off}}$ of $6.9\times 10^{{7}}$ , and a low subthreshold swing (SS) of 93 mV/dec. Furthermore, an E-mode n-channel p-GaN gate high electron mobility transistor (HEMT) was fabricated on the same epi-wafer, exhibiting a ${V}_{\text {th}}$ of 1.3 V and an ${R}_{\text {on}}$ of $6~\mathrm {\Omega \cdot }$ mm. Finally, a GaN CL inverter was fabricated and demonstrated under ${V}_{\text {DD}} =6$ V. Rail-to-rail voltage swing and low static power consumption were both achieved. This work further validates the feasibility of GaN CL integrated circuits and power integrated circuits (PICs).
极化增强e型GaN p-FET及互补逻辑(CL)电路的设计与开发
氮化镓(GaN)层中Mg受体的低电离率是导致e型氮化镓p-场效应管电流密度低的关键因素。本研究采用极化增强技术来提高p-GaN通道的电离速率。为了实现GaN互补逻辑(CL)电路,制备了高性能的嵌入式栅极e模GaN p- fet。在制造过程中,发现通道厚度(${t}_{x}$)是影响器件度量的关键参数。随着${t}_{x}$的减小(即凹槽深度的增大),可以获得更负的阈值电压(${V}_{\text {th}}$);然而,代价是增加${R}_{\text {on}}$。${t}_{x} =32$ nm的e模GaN p-FET显示${V}_{\text {th}}$为−1.1 V,高电流密度为17.7 mA/mm,高${I}_{\text {on}}$ / ${I}_{\text {off}}$为$6.9\ × 10^{{7}}$,低亚阈值摆幅(SS)为93 mV/dec。此外,在相同的外接晶圆上制备了一个e模n通道p-GaN栅极高电子迁移率晶体管(HEMT),其电压为${V}_{\text {th}}$为1.3 V,电压为${R}_{\text {on}}$为$6~\mathrm {\Omega \cdot}$ mm。最后,在${V}_{\text {DD}} =6$ V的条件下,制备了GaN CL逆变器并进行了演示。这项工作进一步验证了GaN CL集成电路和功率集成电路(PICs)的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信