Real-Time Adaptation of Deep Learning Walking Speed Estimators Enables Biomimetic Assistance Modulation in an Open-Source Bionic Leg

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Jairo Y. Maldonado-Contreras;Cole Johnson;Sixu Zhou;Hanjun Kim;Ian Knight;Kinsey R. Herrin;Aaron J. Young
{"title":"Real-Time Adaptation of Deep Learning Walking Speed Estimators Enables Biomimetic Assistance Modulation in an Open-Source Bionic Leg","authors":"Jairo Y. Maldonado-Contreras;Cole Johnson;Sixu Zhou;Hanjun Kim;Ian Knight;Kinsey R. Herrin;Aaron J. Young","doi":"10.1109/TMRB.2025.3550642","DOIUrl":null,"url":null,"abstract":"This study introduces a novel continual learning algorithm that incrementally improves the performance of deep-learning-based walking speed estimators during level-ground walking with a powered knee-ankle prosthesis. While user-dependent (DEP) estimators generally outperform user-independent (IND) estimators, they require the pre-collection of DEP training data. In contrast, our real-time algorithm adapts IND estimators to self-labeled DEP data generated during walking, eliminating the need for pre-collected datasets. The algorithm also features a biomimetic scaling mechanism that adjusts prosthetic assistance based on speed estimates. We evaluated our algorithm on novel subjects (N=10) with unilateral above-knee amputations during treadmill and overground walking. For treadmill trials, when adapted with estimated and ground truth labels, estimators achieved mean absolute errors (MAEs) of 0.074 [0.023] (mean, [standard deviation]) and 0.074 [0.018] m/s, respectively, reflecting a significant 28% (p ¡ 0.05) reduction in MAE compared to non-adapted estimators. For overground trials, treadmill-adapted estimators demonstrated a significant 18% (p ¡ 0.05) reduction in MAE compared to non-adapted estimators. Our algorithm significantly reduced speed estimation errors within one minute of walking and delivered biomimetic assistance (r <inline-formula> <tex-math>${=}0.91$ </tex-math></inline-formula>) across speeds. This approach allows off-the-shelf powered prostheses to seamlessly adapt to new users, delivering biomimetic assistance through precise, real-time walking speed estimation.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"711-722"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel continual learning algorithm that incrementally improves the performance of deep-learning-based walking speed estimators during level-ground walking with a powered knee-ankle prosthesis. While user-dependent (DEP) estimators generally outperform user-independent (IND) estimators, they require the pre-collection of DEP training data. In contrast, our real-time algorithm adapts IND estimators to self-labeled DEP data generated during walking, eliminating the need for pre-collected datasets. The algorithm also features a biomimetic scaling mechanism that adjusts prosthetic assistance based on speed estimates. We evaluated our algorithm on novel subjects (N=10) with unilateral above-knee amputations during treadmill and overground walking. For treadmill trials, when adapted with estimated and ground truth labels, estimators achieved mean absolute errors (MAEs) of 0.074 [0.023] (mean, [standard deviation]) and 0.074 [0.018] m/s, respectively, reflecting a significant 28% (p ¡ 0.05) reduction in MAE compared to non-adapted estimators. For overground trials, treadmill-adapted estimators demonstrated a significant 18% (p ¡ 0.05) reduction in MAE compared to non-adapted estimators. Our algorithm significantly reduced speed estimation errors within one minute of walking and delivered biomimetic assistance (r ${=}0.91$ ) across speeds. This approach allows off-the-shelf powered prostheses to seamlessly adapt to new users, delivering biomimetic assistance through precise, real-time walking speed estimation.
深度学习步行速度估计器的实时适应使开源仿生腿的仿生辅助调制成为可能
本研究引入了一种新的持续学习算法,该算法逐步提高了基于深度学习的行走速度估计器在带动力膝踝假肢的平地行走中的性能。虽然用户依赖(DEP)估计器通常优于用户独立(IND)估计器,但它们需要预先收集DEP训练数据。相比之下,我们的实时算法使IND估计器适应步行过程中产生的自标记DEP数据,从而消除了对预先收集数据集的需要。该算法还具有仿生缩放机制,可根据速度估计调整假肢辅助。我们对在跑步机和地上行走时单侧膝盖以上截肢的新受试者(N=10)评估了我们的算法。对于跑步机试验,当使用估计的和真实的标签时,估计器的平均绝对误差(MAEs)分别为0.074[0.023](平均值,[标准差])和0.074 [0.018]m/s,与未适应的估计器相比,MAE显著降低了28% (p < 0.05)。在地面试验中,与未适应的估计器相比,适应跑步机的估计器显示MAE显著降低18% (p < 0.05)。我们的算法显著降低了步行一分钟内的速度估计误差,并在不同的速度下提供了仿生辅助(r ${=}0.91$)。这种方法允许现成的动力假肢无缝地适应新用户,通过精确的实时行走速度估计提供仿生辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信