Comprehensive Investigation of Bias Stress-Induced Instabilities in Highly Scaled ZnO FeFETs: Impact of Channel Thickness, Channel Length, and Switching Cycles

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen Sun;Qiwen Kong;Gan Liu;Dong Zhang;Leming Jiao;Xiaolin Wang;Jishen Zhang;Haiwen Xu;Yang Feng;Rui Shao;Yue Chen;Xiao Gong
{"title":"Comprehensive Investigation of Bias Stress-Induced Instabilities in Highly Scaled ZnO FeFETs: Impact of Channel Thickness, Channel Length, and Switching Cycles","authors":"Chen Sun;Qiwen Kong;Gan Liu;Dong Zhang;Leming Jiao;Xiaolin Wang;Jishen Zhang;Haiwen Xu;Yang Feng;Rui Shao;Yue Chen;Xiao Gong","doi":"10.1109/TED.2025.3555263","DOIUrl":null,"url":null,"abstract":"We present a comprehensive study of instabilities induced by positive and negative bias stress (PBS/NBS) in zinc oxide (ZnO) ferroelectric field-effect transistors (FeFETs), focusing on the dependence of threshold voltage (<inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula>) and memory window (MW) dynamics on channel thickness (<inline-formula> <tex-math>${T} _{\\text {CH}}$ </tex-math></inline-formula>), channel length (<inline-formula> <tex-math>${L} _{\\text {CH}}$ </tex-math></inline-formula>), and switching cycles. Based on Zr-doped HfO2 (HZO) and by optimizing <inline-formula> <tex-math>${T} _{\\text {CH}}$ </tex-math></inline-formula> and scaling <inline-formula> <tex-math>${L} _{\\text {CH}}$ </tex-math></inline-formula> down to 45 nm, high-performance ZnO FeFETs with an HZO-Al2O3–HZO ferroelectric (Fe) stack and an atomic layer deposition (ALD)-deposited channel are realized, achieving a large MW of 3.0 V, robust retention, and high endurance exceeding 108 cycles. Bias stress investigations reveal several key findings. First, devices with thinner <inline-formula> <tex-math>${T} _{\\text {CH}}$ </tex-math></inline-formula> exhibit higher <inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula> susceptibility under PBS and NBS, which attributed to stronger electron trapping effects and the generation of more disorder state (DS) O2- defects, respectively. Thanks to the strengthened effect of NBS-enhanced erasing, thinner <inline-formula> <tex-math>${T} _{\\text {CH}}$ </tex-math></inline-formula> results in better MW tolerance during NBS, thus partially offsetting the MW degradation due to polarization pinning. Second, this NBS-enhanced erasing effect is particularly pronounced in short-channel devices (<inline-formula> <tex-math>${L} _{\\text {CH}} = 45$ </tex-math></inline-formula> nm), even leading to an increase in MW. In contrast, during PBS, <inline-formula> <tex-math>${L} _{\\text {CH}}$ </tex-math></inline-formula> has little impact on <inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula> and MW instabilities. Finally, it is observed that the degraded MW in heavily cycled devices can be slightly recovered after NBS.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2334-2340"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10952381/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive study of instabilities induced by positive and negative bias stress (PBS/NBS) in zinc oxide (ZnO) ferroelectric field-effect transistors (FeFETs), focusing on the dependence of threshold voltage ( ${V} _{\text {TH}}$ ) and memory window (MW) dynamics on channel thickness ( ${T} _{\text {CH}}$ ), channel length ( ${L} _{\text {CH}}$ ), and switching cycles. Based on Zr-doped HfO2 (HZO) and by optimizing ${T} _{\text {CH}}$ and scaling ${L} _{\text {CH}}$ down to 45 nm, high-performance ZnO FeFETs with an HZO-Al2O3–HZO ferroelectric (Fe) stack and an atomic layer deposition (ALD)-deposited channel are realized, achieving a large MW of 3.0 V, robust retention, and high endurance exceeding 108 cycles. Bias stress investigations reveal several key findings. First, devices with thinner ${T} _{\text {CH}}$ exhibit higher ${V} _{\text {TH}}$ susceptibility under PBS and NBS, which attributed to stronger electron trapping effects and the generation of more disorder state (DS) O2- defects, respectively. Thanks to the strengthened effect of NBS-enhanced erasing, thinner ${T} _{\text {CH}}$ results in better MW tolerance during NBS, thus partially offsetting the MW degradation due to polarization pinning. Second, this NBS-enhanced erasing effect is particularly pronounced in short-channel devices ( ${L} _{\text {CH}} = 45$ nm), even leading to an increase in MW. In contrast, during PBS, ${L} _{\text {CH}}$ has little impact on ${V} _{\text {TH}}$ and MW instabilities. Finally, it is observed that the degraded MW in heavily cycled devices can be slightly recovered after NBS.
高尺度ZnO效应管中偏置应力诱导不稳定性的综合研究:沟道厚度、沟道长度和开关周期的影响
我们全面研究了氧化锌(ZnO)铁电场效应晶体管(fefet)中正负偏置应力(PBS/NBS)引起的不稳定性,重点研究了阈值电压(${V} _{\text {TH}}$)和记忆窗(MW)动力学对沟道厚度(${T} _{\text {CH}}$)、沟道长度(${L} _{\text {CH}}$)和开关周期的依赖关系。基于zr掺杂的HfO2 (HZO),通过优化${T} _{\text {CH}}$并将${L} _{\text {CH}}$缩小至45 nm,实现了具有HZO- al2o3 - HZO铁电(Fe)堆叠和原子层沉积(ALD)沉积通道的高性能ZnO fefet,实现了3.0 V的大MW,稳定的保留率和超过108次循环的高续航时间。偏倚应力调查揭示了几个关键发现。首先,${T} _{\text {CH}}$较薄的器件在PBS和NBS下表现出更高的${V} _{\text {TH}}$磁化率,这分别归因于更强的电子捕获效应和更多的无序态(DS) O2-缺陷的产生。由于NBS增强擦除效应的增强,更薄的${T} _{\text {CH}}$在NBS过程中具有更好的毫瓦容限,从而部分抵消了极化钉住引起的毫瓦退化。其次,这种nbs增强的擦除效应在短信道器件中特别明显(${L} _{\text {CH}} = 45$ nm),甚至导致MW的增加。PBS过程中,${L} _{\text {CH}}$对${V} _{\text {TH}}$和MW的不稳定性影响不大。最后,我们观察到重循环装置中退化的MW在NBS后可以得到轻微的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信