Efficient Large Scale Neural Network Acceleration With 3-D FeNOR-Based Computing-in-Memory Design

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Feng;Dong Zhang;Chen Sun;Zijie Zheng;Yue Chen;Qiwen Kong;Gan Liu;Xiaolin Wang;Yuye Kang;Kaizhen Han;Zuopu Zhou;Leming Jiao;Jixuan Wu;Jiezhi Chen;Xiao Gong
{"title":"Efficient Large Scale Neural Network Acceleration With 3-D FeNOR-Based Computing-in-Memory Design","authors":"Yang Feng;Dong Zhang;Chen Sun;Zijie Zheng;Yue Chen;Qiwen Kong;Gan Liu;Xiaolin Wang;Yuye Kang;Kaizhen Han;Zuopu Zhou;Leming Jiao;Jixuan Wu;Jiezhi Chen;Xiao Gong","doi":"10.1109/TED.2025.3554164","DOIUrl":null,"url":null,"abstract":"In this work, we introduce and experimentally demonstrate a 3-D stacked ferroelectric <sc>nor</small> (FeNOR) memory, featuring a back-end-of-line (BEOL) zinc oxide (ZnO) channel, and a metal-ferroelectric–metal-insulator5 semiconductor (MFMIS) unit cell. The main contributions of this work are as follows: 1) enhanced memory window (MW) and high <sc>on</small>/<sc>off</small> ratio: The MFMIS architecture in 3-D FeNOR enables a tunable and large MW (~4 V), as well as an <sc>on</small>/<sc>off</small> ratio (<inline-formula> <tex-math>${I}_{\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {off}}$ </tex-math></inline-formula>) of six orders of magnitude; 2) low operation voltage and high endurance: The integration of ferroelectric materials allows for low operation voltages (~4 V) and excellent endurance (<inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula> cycles); 3) efficient neural network implementation: Leveraging the 3-D FeNOR structure, we further develop VGG-16 and ResNet-50 convolutional neural networks that achieve high prediction accuracy, decent area efficiency, and low power consumption. The emergence of 3-D FeNOR technology positions ferroelectric devices as a highly promising candidate for computing-in-memory (CIM) applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2319-2326"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10957835/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce and experimentally demonstrate a 3-D stacked ferroelectric nor (FeNOR) memory, featuring a back-end-of-line (BEOL) zinc oxide (ZnO) channel, and a metal-ferroelectric–metal-insulator5 semiconductor (MFMIS) unit cell. The main contributions of this work are as follows: 1) enhanced memory window (MW) and high on/off ratio: The MFMIS architecture in 3-D FeNOR enables a tunable and large MW (~4 V), as well as an on/off ratio ( ${I}_{\text {on}}$ / ${I}_{\text {off}}$ ) of six orders of magnitude; 2) low operation voltage and high endurance: The integration of ferroelectric materials allows for low operation voltages (~4 V) and excellent endurance ( $10^{{7}}$ cycles); 3) efficient neural network implementation: Leveraging the 3-D FeNOR structure, we further develop VGG-16 and ResNet-50 convolutional neural networks that achieve high prediction accuracy, decent area efficiency, and low power consumption. The emergence of 3-D FeNOR technology positions ferroelectric devices as a highly promising candidate for computing-in-memory (CIM) applications.
基于三维fenor内存计算设计的高效大规模神经网络加速
在这项工作中,我们介绍并实验展示了一种3-D堆叠铁电nor (FeNOR)存储器,具有后端线(BEOL)氧化锌(ZnO)通道和金属-铁电-金属-绝缘体半导体(MFMIS)单元电池。本工作的主要贡献如下:1)增强的记忆窗口(MW)和高开/关比:三维FeNOR中的MFMIS架构实现了可调的大MW (~4 V),以及6个数量级的开/关比(${I}_{\text {on}}$ / ${I}_{\text {off}}$);2)低工作电压和高耐用性:铁电材料的集成允许低工作电压(~4 V)和优异的耐用性($10^{{7}}$循环);3)高效的神经网络实现:利用3- d FeNOR结构,我们进一步开发了VGG-16和ResNet-50卷积神经网络,实现了高预测精度、良好的面积效率和低功耗。3-D FeNOR技术的出现使铁电器件成为内存计算(CIM)应用的一个非常有前途的候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信