Jaka Petelin, Matevž Marš, Jaka Mur, Rok Petkovšek
{"title":"In-situ measurements of residual heating during pulse-on-demand femtosecond laser surface microprocessing","authors":"Jaka Petelin, Matevž Marš, Jaka Mur, Rok Petkovšek","doi":"10.1016/j.optlastec.2025.113201","DOIUrl":null,"url":null,"abstract":"<div><div>Femtosecond laser processing offers highly precise structuring with minimal residual heating of materials. However, at high average powers and pulse repetition rates, heating can limit process efficiency. The pulse-on-demand laser operation regime has proven to be an optimal solution for achieving high throughput and quality in laser microstructuring, independent of the scanner’s capabilities. Here, we present in situ measurements of residual heating during femtosecond laser microstructuring. By combining experimental observations with simulations, we investigate residual heat retention in various target materials and its associated effects. A high-speed thermal camera was employed for direct process monitoring, providing spatially and temporally resolved measurements of surface temperatures during laser microstructuring. The results were quantified using finite element–based numerical simulations of the material’s transient thermal response, enabling us to assess the conversion of laser power into unwanted residual heating. Surface topography measurements further contextualize the temperature data within the framework of microprocessing performance. We compare the effects of the pulse-on-demand regime with those observed in quasi-stationary cases, addressing both scanner acceleration compensation and advanced surface shaping achieved through laser repetition rate modulation algorithms. The pulse-on-demand regime’s ability to compensate for irregular scanner movements enables faster and more precise femtosecond laser processing of brittle and heat-sensitive materials.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"190 ","pages":"Article 113201"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225007923","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Femtosecond laser processing offers highly precise structuring with minimal residual heating of materials. However, at high average powers and pulse repetition rates, heating can limit process efficiency. The pulse-on-demand laser operation regime has proven to be an optimal solution for achieving high throughput and quality in laser microstructuring, independent of the scanner’s capabilities. Here, we present in situ measurements of residual heating during femtosecond laser microstructuring. By combining experimental observations with simulations, we investigate residual heat retention in various target materials and its associated effects. A high-speed thermal camera was employed for direct process monitoring, providing spatially and temporally resolved measurements of surface temperatures during laser microstructuring. The results were quantified using finite element–based numerical simulations of the material’s transient thermal response, enabling us to assess the conversion of laser power into unwanted residual heating. Surface topography measurements further contextualize the temperature data within the framework of microprocessing performance. We compare the effects of the pulse-on-demand regime with those observed in quasi-stationary cases, addressing both scanner acceleration compensation and advanced surface shaping achieved through laser repetition rate modulation algorithms. The pulse-on-demand regime’s ability to compensate for irregular scanner movements enables faster and more precise femtosecond laser processing of brittle and heat-sensitive materials.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems