Optical properties of SnX (X=S,Se): Insight from independent particle approximation and Bethe Salpeter equation

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad Asif , Altaf Ur Rahman , Gul Rahman , Imed Boukhris , M.S. Al-Buriahi , Zainab Mufarreh Elqahtani
{"title":"Optical properties of SnX (X=S,Se): Insight from independent particle approximation and Bethe Salpeter equation","authors":"Muhammad Asif ,&nbsp;Altaf Ur Rahman ,&nbsp;Gul Rahman ,&nbsp;Imed Boukhris ,&nbsp;M.S. Al-Buriahi ,&nbsp;Zainab Mufarreh Elqahtani","doi":"10.1016/j.mssp.2025.109609","DOIUrl":null,"url":null,"abstract":"<div><div>First-principles calculations based on density functional theory (DFT) are carried out to study the electronic, structural and optical properties of bulk SnX (X = S, Se). The calculated cohesive energy calculations show that bond strength is smaller in SnSe than SnS that makes SnS energetically more stable than SnSe. Electronic band structures show that, both SnS and SnSe are indirect band gap semiconductors with band gap of 1.09 eV and 0.72 eV, respectively. The BSE method combined with IPA is employed to incorporate excitonic effects, accurately capturing the optical response of the materials. The static dielectric constants of SnS and SnSe exhibit directional anisotropy and show a significant increase when excitonic interactions are considered, highlighting the importance of many-body effects in accurately predicting optical properties. The exciton binding energy and Bohr radius are also calculated to assess the strength of electron–hole interactions. The plasmon frequency is found to be larger for SnS as compared with SnSe due to larger carrier density of SnS. It is shown that SnSe has larger refractive index and extinction coefficient than SnS in both IPA and BSE. Most of the light is absorbed in the visible region for both materials. Both materials have efficient absorption in near infrared (IR) and visible range (VR) and maximum in near ultraviolet (UV) range, but SnSe has a little higher absorption coefficient than SnS in visible spectrum region due to smaller band gap than SnS. Overall, BSE under estimates the optical properties in the UV region as compared with IPA. We, therefore, believe that both materials are efficient for photovoltaic applications.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"197 ","pages":"Article 109609"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125003464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

First-principles calculations based on density functional theory (DFT) are carried out to study the electronic, structural and optical properties of bulk SnX (X = S, Se). The calculated cohesive energy calculations show that bond strength is smaller in SnSe than SnS that makes SnS energetically more stable than SnSe. Electronic band structures show that, both SnS and SnSe are indirect band gap semiconductors with band gap of 1.09 eV and 0.72 eV, respectively. The BSE method combined with IPA is employed to incorporate excitonic effects, accurately capturing the optical response of the materials. The static dielectric constants of SnS and SnSe exhibit directional anisotropy and show a significant increase when excitonic interactions are considered, highlighting the importance of many-body effects in accurately predicting optical properties. The exciton binding energy and Bohr radius are also calculated to assess the strength of electron–hole interactions. The plasmon frequency is found to be larger for SnS as compared with SnSe due to larger carrier density of SnS. It is shown that SnSe has larger refractive index and extinction coefficient than SnS in both IPA and BSE. Most of the light is absorbed in the visible region for both materials. Both materials have efficient absorption in near infrared (IR) and visible range (VR) and maximum in near ultraviolet (UV) range, but SnSe has a little higher absorption coefficient than SnS in visible spectrum region due to smaller band gap than SnS. Overall, BSE under estimates the optical properties in the UV region as compared with IPA. We, therefore, believe that both materials are efficient for photovoltaic applications.
SnX (X=S,Se)的光学性质:来自独立粒子近似和Bethe Salpeter方程的洞察
基于密度泛函理论(DFT)的第一性原理计算研究了体块SnX (X = S, Se)的电子、结构和光学性质。计算的黏结能计算表明,SnSe的键强度比SnS小,这使得SnS在能量上比SnSe更稳定。电子能带结构表明,SnS和SnSe均为间接带隙半导体,带隙分别为1.09 eV和0.72 eV。利用BSE和IPA相结合的方法结合激子效应,准确地捕获了材料的光学响应。当考虑激子相互作用时,SnS和SnSe的静态介电常数呈现出方向性各向异性,并显著增加,突出了多体效应在准确预测光学性质中的重要性。还计算了激子结合能和玻尔半径,以评估电子-空穴相互作用的强度。由于SnS的载流子密度较大,其等离子体激元频率比SnSe高。结果表明,在IPA和BSE中,SnSe的折射率和消光系数都大于SnS。两种材料的大部分光都在可见光区被吸收。两种材料在近红外(IR)和可见光(VR)范围内都有有效的吸收,在近紫外(UV)范围内吸收最大,但SnSe在可见光区域的吸收系数略高于SnS,因为其带隙比SnS小。总的来说,与IPA相比,BSE低估了紫外线区的光学特性。因此,我们相信这两种材料在光伏应用中都是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信