{"title":"The role of macro-finance factors in predicting stock market volatility: A latent threshold dynamic model","authors":"John M. Maheu , Azam Shamsi Zamenjani","doi":"10.1016/j.jempfin.2025.101620","DOIUrl":null,"url":null,"abstract":"<div><div>Measuring, modeling, and forecasting volatility are of great importance in financial applications such as asset pricing, portfolio management, and risk management. In this paper, we investigate predictability of stock market volatility by macro-finance variables in a dynamic regression framework using latent thresholding. The latent threshold models allow data-driven shrinkage of regression coefficients by collapsing them to zero for irrelevant predictor variables and allowing for time-varying nonzero coefficients when supported by the data. This is a parsimonious framework which selects what potential predictor variables should be included in the regressions and when. We extend this model to allow for stochastic volatility for realized volatility innovations and discuss Bayesian estimation methods. We apply the models to monthly S&P 500 and NASDAQ 100 volatility and find that using macro-finance variables in volatility forecasts enhances model performance statistically and economically, particularly when we allow for dynamic inclusion/exclusion of these variables.</div></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"82 ","pages":"Article 101620"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539825000428","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring, modeling, and forecasting volatility are of great importance in financial applications such as asset pricing, portfolio management, and risk management. In this paper, we investigate predictability of stock market volatility by macro-finance variables in a dynamic regression framework using latent thresholding. The latent threshold models allow data-driven shrinkage of regression coefficients by collapsing them to zero for irrelevant predictor variables and allowing for time-varying nonzero coefficients when supported by the data. This is a parsimonious framework which selects what potential predictor variables should be included in the regressions and when. We extend this model to allow for stochastic volatility for realized volatility innovations and discuss Bayesian estimation methods. We apply the models to monthly S&P 500 and NASDAQ 100 volatility and find that using macro-finance variables in volatility forecasts enhances model performance statistically and economically, particularly when we allow for dynamic inclusion/exclusion of these variables.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.