Shengjie Wang , Wei Liu , Chao Yang , Xianlong Zhang , Chunming Lyu
{"title":"Sulfonated polyetheretherketone enriched with MXene V2C promotes bone formation via WNT/β-catenin signaling in bone marrow mesenchymal stem cells","authors":"Shengjie Wang , Wei Liu , Chao Yang , Xianlong Zhang , Chunming Lyu","doi":"10.1016/j.medengphy.2025.104361","DOIUrl":null,"url":null,"abstract":"<div><div>Prosthetic loosening represents a catastrophic postoperative complication in artificial joint replacement, resulting in severe patient morbidity and substantial healthcare costs. This investigation aimed to develop a novel strategy for preventing prosthetic loosening. Two-dimensional MXene V<sub>2</sub>C nanosheets were synthesized and subsequently immobilized onto three-dimensional porous sulfonated polyetheretherketone (SPEEK) surfaces with polydopamine (PDA) to form V<sub>2</sub>C-PDA@SPEEK (Abbrev. V<sub>2</sub>C-PS). The biocompatibility was systematically evaluated using rat bone marrow mesenchymal stem cells (rBMSCs) and murine models. The osteogenic differentiation potential of V<sub>2</sub>C-PS was assessed through real-time PCR analysis, Alkaline phosphatase (ALP) staining, and Alizarin Red staining. The in vivo osteogenic capacity of V<sub>2</sub>C-PS surrounding the implant material was evaluated in rat femoral models using micro-CT analysis, biomechanical pull-out testing, sequential fluorescent labeling of newly formed bone, and Van Gieson staining. The molecular mechanisms underlying V<sub>2</sub>C-PS -mediated osteogenic differentiation of rBMSCs were investigated both in vitro and in vivo using chemical inhibitors, β-catenin shRNA lentiviral silencing, and β-catenin mRNA lentiviral overexpression. The results demonstrated that V<sub>2</sub>C-PS exhibited excellent biocompatibility. Quantitative analysis revealed substantial upregulation (p < 0.05) of critical osteogenic markers, including RUNX2 (4.4-fold), COL-1 (5.7-fold), OCN (3.3-fold), BMP-2 (4.4-fold), OPN (3.1-fold), BSP (3.3-fold), ON (4.3-fold), and OSX (2.83-fold), in the 25V<sub>2</sub>C-PS treatment group compared to PS group. The bone parameters were also remarkably enhanced in the 25V<sub>2</sub>C-PS group (BMD increased by 241 %, bone-implant contact by 159 %, BV/TV by 225 %, Tb.N by 281 %, Tb.Th by 214 %, maximum pull-out force by 250 %, and Tp.Sp decreased by 33 %). Furthermore, V<sub>2</sub>C-PS were found to enhance rBMSC osteogenic differentiation through activation of the Wnt/β-catenin signaling pathway. This study presents a promising approach for preventing orthopedic prosthetic loosening and demonstrates significant potential for clinical translation.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"141 ","pages":"Article 104361"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prosthetic loosening represents a catastrophic postoperative complication in artificial joint replacement, resulting in severe patient morbidity and substantial healthcare costs. This investigation aimed to develop a novel strategy for preventing prosthetic loosening. Two-dimensional MXene V2C nanosheets were synthesized and subsequently immobilized onto three-dimensional porous sulfonated polyetheretherketone (SPEEK) surfaces with polydopamine (PDA) to form V2C-PDA@SPEEK (Abbrev. V2C-PS). The biocompatibility was systematically evaluated using rat bone marrow mesenchymal stem cells (rBMSCs) and murine models. The osteogenic differentiation potential of V2C-PS was assessed through real-time PCR analysis, Alkaline phosphatase (ALP) staining, and Alizarin Red staining. The in vivo osteogenic capacity of V2C-PS surrounding the implant material was evaluated in rat femoral models using micro-CT analysis, biomechanical pull-out testing, sequential fluorescent labeling of newly formed bone, and Van Gieson staining. The molecular mechanisms underlying V2C-PS -mediated osteogenic differentiation of rBMSCs were investigated both in vitro and in vivo using chemical inhibitors, β-catenin shRNA lentiviral silencing, and β-catenin mRNA lentiviral overexpression. The results demonstrated that V2C-PS exhibited excellent biocompatibility. Quantitative analysis revealed substantial upregulation (p < 0.05) of critical osteogenic markers, including RUNX2 (4.4-fold), COL-1 (5.7-fold), OCN (3.3-fold), BMP-2 (4.4-fold), OPN (3.1-fold), BSP (3.3-fold), ON (4.3-fold), and OSX (2.83-fold), in the 25V2C-PS treatment group compared to PS group. The bone parameters were also remarkably enhanced in the 25V2C-PS group (BMD increased by 241 %, bone-implant contact by 159 %, BV/TV by 225 %, Tb.N by 281 %, Tb.Th by 214 %, maximum pull-out force by 250 %, and Tp.Sp decreased by 33 %). Furthermore, V2C-PS were found to enhance rBMSC osteogenic differentiation through activation of the Wnt/β-catenin signaling pathway. This study presents a promising approach for preventing orthopedic prosthetic loosening and demonstrates significant potential for clinical translation.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.