Tensor product surfaces and quadratic syzygies

IF 1 3区 数学 Q1 MATHEMATICS
Matthew Weaver
{"title":"Tensor product surfaces and quadratic syzygies","authors":"Matthew Weaver","doi":"10.1016/j.laa.2025.04.020","DOIUrl":null,"url":null,"abstract":"<div><div>For <span><math><mi>U</mi><mo>⊆</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>)</mo></math></span> a four-dimensional vector space, a basis <span><math><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span> of <em>U</em> defines a rational map <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>:</mo><mspace></mspace><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>⇢</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The tensor product surface associated to <em>U</em> is the closed image <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> of the map <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span>. These surfaces arise within the field of geometric modelling, in which case it is particularly desirable to obtain the implicit equation of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span>. In this paper, we study <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> via the syzygies of the associated bigraded ideal <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> when <em>U</em> is free of basepoints, i.e. <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> is regular. Expanding upon work of Duarte and Schenck <span><span>[12]</span></span> for such ideals with a linear syzygy, we address the case that <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> has a quadratic syzygy.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 350-372"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001764","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For UH0(OP1×P1(a,b)) a four-dimensional vector space, a basis {p0,p1,p2,p3} of U defines a rational map ϕU:P1×P1P3. The tensor product surface associated to U is the closed image XU of the map ϕU. These surfaces arise within the field of geometric modelling, in which case it is particularly desirable to obtain the implicit equation of XU. In this paper, we study XU via the syzygies of the associated bigraded ideal IU=(p0,p1,p2,p3) when U is free of basepoints, i.e. ϕU is regular. Expanding upon work of Duarte and Schenck [12] for such ideals with a linear syzygy, we address the case that IU has a quadratic syzygy.
张量积曲面与二次合
对于一个四维向量空间U (OP1×P1(a,b)), U的一个基{p0,p1,p2,p3}定义了一个有理映射ϕU:P1×P1与U相关联的张量积曲面是映射 U的封闭图像XU。这些曲面出现在几何建模领域,在这种情况下,特别需要得到XU的隐式方程。在本文中,我们研究了当U没有基点时,即当U是正则的时,通过相关的梯度理想IU=(p0,p1,p2,p3)的合集来研究XU。在Duarte和Schenck[12]对这种理想的线性协同的研究基础上,我们讨论了IU具有二次协同的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信