Zonglin Yi, Yi Zhou, Hao Liu, Li Li, Yan Zhao, Jiayuan Li, Yixuan Mao, Fangyuan Su, Cheng-Meng Chen
{"title":"Predicting practical reduction potential of electrolyte solvents via computational hydrogen electrode and interpretable machine-learning models","authors":"Zonglin Yi, Yi Zhou, Hao Liu, Li Li, Yan Zhao, Jiayuan Li, Yixuan Mao, Fangyuan Su, Cheng-Meng Chen","doi":"10.1038/s41524-025-01582-w","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of practical reduction electrode potentials (<i>E</i><sub>red</sub>) of electrolyte solvents of electrochemical energy storage devices relies on calculating the Gibbs free energy in their reduction reaction. However, the emergence of new electrolyte solvents and additives leaves most of the reaction mechanisms unveiled. Here, we provide a machine-learning-assisted workflow of thermodynamically quantified <i>E</i><sub>red</sub> prediction for electrolyte solvents. A computational hydrogen electrode model based on density functional theory calculation is generalized for calculating the reaction free energy of electrochemical elementary steps. Machine-learning models are trained based on the organic and inorganic electrolyte solvents that possess experimentally identified reduction mechanisms. Validation of the best-scoring model is conducted by experimental validation of 6 additional solvents. Multiple thermodynamics features are found impactful on <i>E</i><sub>red</sub> through different chemical bonding with reaction intermediates. This workflow enables accurate <i>E</i><sub>red</sub> prediction for electrolyte solvents without identified reduction mechanisms, and is widely applicable in the electrochemical energy storage area.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01582-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of practical reduction electrode potentials (Ered) of electrolyte solvents of electrochemical energy storage devices relies on calculating the Gibbs free energy in their reduction reaction. However, the emergence of new electrolyte solvents and additives leaves most of the reaction mechanisms unveiled. Here, we provide a machine-learning-assisted workflow of thermodynamically quantified Ered prediction for electrolyte solvents. A computational hydrogen electrode model based on density functional theory calculation is generalized for calculating the reaction free energy of electrochemical elementary steps. Machine-learning models are trained based on the organic and inorganic electrolyte solvents that possess experimentally identified reduction mechanisms. Validation of the best-scoring model is conducted by experimental validation of 6 additional solvents. Multiple thermodynamics features are found impactful on Ered through different chemical bonding with reaction intermediates. This workflow enables accurate Ered prediction for electrolyte solvents without identified reduction mechanisms, and is widely applicable in the electrochemical energy storage area.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.