Jie Chen,Xiaojie Wang,Xinyao Liu,Lei Shi,Xiao-Qi Yu,Xiaobo Cen,Kun Li
{"title":"Rational Design of Long-Circulating Bright Fluorescent Probe for In Vivo Imaging of Amyloid-β Plaques in Alzheimer's Disease.","authors":"Jie Chen,Xiaojie Wang,Xinyao Liu,Lei Shi,Xiao-Qi Yu,Xiaobo Cen,Kun Li","doi":"10.1021/acs.analchem.5c01619","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the pathological accumulation of amyloid-β (Aβ) plaques, which serve as crucial biomarkers for disease diagnosis and therapeutic evaluation. While fluorescence imaging has emerged as a powerful technique for Aβ detection, current probes face limitations in clinical application due to insufficient photostability and short blood half-life, resulting in compromised signal-to-noise ratios (SNRs) and imaging resolution. Herein, two bright quinoxalinone-based fluorescent probes (QNO-AD-PEGs) were presented, which incorporate hydrophilic poly(ethylene glycol) (PEG) chains for enhanced biocompatibility and an Aβ-specific N,N-dimethylaminophenyl recognition unit. QNO-AD-PEG1 demonstrated exceptional binding affinity for Aβ42 aggregates (Kd = 42 nM) and a remarkable 49-fold fluorescence enhancement upon target engagement, with a quantum yield (ΦAβ) of 11.45%. In vivo imaging revealed that QNO-AD-PEG1 effectively crossed the blood-brain barrier (BBB) and exhibited a prolonged half-life (315 min). Notably, the probe successfully visualized age-dependent Aβ plaque progression in AD mouse models. This study presents a significant breakthrough in molecular imaging for neurodegenerative diseases, offering a versatile tool for both fundamental AD research and potential clinical applications.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"30 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01619","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the pathological accumulation of amyloid-β (Aβ) plaques, which serve as crucial biomarkers for disease diagnosis and therapeutic evaluation. While fluorescence imaging has emerged as a powerful technique for Aβ detection, current probes face limitations in clinical application due to insufficient photostability and short blood half-life, resulting in compromised signal-to-noise ratios (SNRs) and imaging resolution. Herein, two bright quinoxalinone-based fluorescent probes (QNO-AD-PEGs) were presented, which incorporate hydrophilic poly(ethylene glycol) (PEG) chains for enhanced biocompatibility and an Aβ-specific N,N-dimethylaminophenyl recognition unit. QNO-AD-PEG1 demonstrated exceptional binding affinity for Aβ42 aggregates (Kd = 42 nM) and a remarkable 49-fold fluorescence enhancement upon target engagement, with a quantum yield (ΦAβ) of 11.45%. In vivo imaging revealed that QNO-AD-PEG1 effectively crossed the blood-brain barrier (BBB) and exhibited a prolonged half-life (315 min). Notably, the probe successfully visualized age-dependent Aβ plaque progression in AD mouse models. This study presents a significant breakthrough in molecular imaging for neurodegenerative diseases, offering a versatile tool for both fundamental AD research and potential clinical applications.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.