Jie Xu, Yi Li, Xiangyu Li, Xuan Tan, Lihua Liu, Lining Cao, Hui Xu
{"title":"Microglia-Derived IL-6 Promotes Müller Glia Reprogramming and Proliferation in Zebrafish Retina Regeneration.","authors":"Jie Xu, Yi Li, Xiangyu Li, Xuan Tan, Lihua Liu, Lining Cao, Hui Xu","doi":"10.1167/iovs.66.4.67","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Inflammation activates the Jak1-Stat3 signaling pathway in zebrafish Müller glia (MG), leading to their status transition and proliferation following retinal injury. However, the source of Stat3-activating molecules remains unclear. This study aims to explore the expression and function of a Stat3-activating cytokine IL-6 in zebrafish retina regeneration.</p><p><strong>Methods: </strong>Mechanical retinal injury was induced in adult zebrafish by a needle-poke lesion. Single-cell RNA sequencing (scRNAseq) and PCR were used to determine gene expression. Microglia ablation was performed by using the mpeg1:nsfb-mcherry transgenic zebrafish. Morpholino oligonucleotides, a recombinant zebrafish IL-6 protein and drugs, were used to manipulate IL-6 or Stat3 signaling in the retina. The 5-Ethynyl-2'-deoxyuridine (EdU) labeling was used to evaluate MG proliferation and the formation of MG-derived progenitor cells (MGPCs). Neuronal regeneration in the retina was analyzed by lineage tracing and immunostaining.</p><p><strong>Results: </strong>The scRNAseq reveals that IL-6 is mainly expressed by a subset of pro-inflammatory microglia in the injured retina. Loss- and gain-of-function experiments demonstrate that IL-6 signaling promotes MG proliferation and the formation of MGPCs following retinal injury. Additionally, IL-6 facilitates MG status transition by modulating Jak1-Stat3 signaling and the expression of regeneration-associated genes. Interestingly, IL-6 may also regulate MGPC formation via phase-dependent pro-inflammatory and anti-inflammatory mechanisms. Finally, IL-6 promotes the early differentiation of MGPCs and contributes to the regeneration of retinal neurons in the injured retina.</p><p><strong>Conclusions: </strong>Our study unveils the critical role of microglia-derived IL-6 in zebrafish retina regeneration, with potential implications for mammalian MG reprogramming.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 4","pages":"67"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.4.67","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Inflammation activates the Jak1-Stat3 signaling pathway in zebrafish Müller glia (MG), leading to their status transition and proliferation following retinal injury. However, the source of Stat3-activating molecules remains unclear. This study aims to explore the expression and function of a Stat3-activating cytokine IL-6 in zebrafish retina regeneration.
Methods: Mechanical retinal injury was induced in adult zebrafish by a needle-poke lesion. Single-cell RNA sequencing (scRNAseq) and PCR were used to determine gene expression. Microglia ablation was performed by using the mpeg1:nsfb-mcherry transgenic zebrafish. Morpholino oligonucleotides, a recombinant zebrafish IL-6 protein and drugs, were used to manipulate IL-6 or Stat3 signaling in the retina. The 5-Ethynyl-2'-deoxyuridine (EdU) labeling was used to evaluate MG proliferation and the formation of MG-derived progenitor cells (MGPCs). Neuronal regeneration in the retina was analyzed by lineage tracing and immunostaining.
Results: The scRNAseq reveals that IL-6 is mainly expressed by a subset of pro-inflammatory microglia in the injured retina. Loss- and gain-of-function experiments demonstrate that IL-6 signaling promotes MG proliferation and the formation of MGPCs following retinal injury. Additionally, IL-6 facilitates MG status transition by modulating Jak1-Stat3 signaling and the expression of regeneration-associated genes. Interestingly, IL-6 may also regulate MGPC formation via phase-dependent pro-inflammatory and anti-inflammatory mechanisms. Finally, IL-6 promotes the early differentiation of MGPCs and contributes to the regeneration of retinal neurons in the injured retina.
Conclusions: Our study unveils the critical role of microglia-derived IL-6 in zebrafish retina regeneration, with potential implications for mammalian MG reprogramming.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.