Epileptic seizure detection in EEG signals using deep learning: LSTM and bidirectional LSTM.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ghezala Chekhmane, Radhwane Benali
{"title":"Epileptic seizure detection in EEG signals using deep learning: LSTM and bidirectional LSTM.","authors":"Ghezala Chekhmane, Radhwane Benali","doi":"10.1080/10255842.2025.2490136","DOIUrl":null,"url":null,"abstract":"<p><p>This paper established a new automatic method to detect epileptic seizures in EEG signals based on discret wavelet transform (DWT) and Deep Learning (DL). DWT is used to decompose EEG into different sub-bands. Moreover, the proposed model combines Long Short-Term Memory (LSTM) and bidirectional LSTM (BiLSTM) networks with one layer of each network consecutive. The experimental results yield higher accuracies of 100% which it is demonstrated that the obtained results achieve better performance by using the new hybrid LSTM-BiLSTM network than other works. Finally, this hybrid LSTM-BiLSTM model confirmed their effectiveness for the classification of epileptic EEG signals.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-24"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2490136","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper established a new automatic method to detect epileptic seizures in EEG signals based on discret wavelet transform (DWT) and Deep Learning (DL). DWT is used to decompose EEG into different sub-bands. Moreover, the proposed model combines Long Short-Term Memory (LSTM) and bidirectional LSTM (BiLSTM) networks with one layer of each network consecutive. The experimental results yield higher accuracies of 100% which it is demonstrated that the obtained results achieve better performance by using the new hybrid LSTM-BiLSTM network than other works. Finally, this hybrid LSTM-BiLSTM model confirmed their effectiveness for the classification of epileptic EEG signals.

基于深度学习的脑电信号癫痫发作检测:LSTM和双向LSTM。
本文建立了一种基于离散小波变换(DWT)和深度学习(DL)的脑电信号癫痫发作自动检测方法。采用小波变换将脑电信号分解成不同的子带。此外,该模型结合了长短期记忆(LSTM)和双向LSTM (BiLSTM)网络,每个网络连续一层。实验结果表明,采用新的混合LSTM-BiLSTM网络得到的结果比其他方法得到的结果具有更好的性能。最后,验证了LSTM-BiLSTM混合模型对癫痫脑电信号分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信