Basic acceleration technique with theoretical analysis on iterative algorithms for image reconstruction.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Shuhua Ji, Boyan Ren, Xing Zhao, Xuying Zhao
{"title":"Basic acceleration technique with theoretical analysis on iterative algorithms for image reconstruction.","authors":"Shuhua Ji, Boyan Ren, Xing Zhao, Xuying Zhao","doi":"10.1177/08953996251335119","DOIUrl":null,"url":null,"abstract":"<p><p>In image reconstruction and processing, incorporating prior information, particularly the nonnegativity of pixel values, is essential. Existing computed tomography (CT) iterative reconstruction algorithms, including the algebraic reconstruction technique (ART), simultaneous ART (SART), and the simultaneous iterative reconstruction technique (SIRT), typically address negative components during the iteration process by either setting them to zero, introducing regularization terms to prevent negativity, or leaving them unchanged. This paper establishes a general framework in which enforcing the nonnegativity prior accelerates the convergence of the reconstructed image toward the true solution. Within this framework, we propose two efficient and simple acceleration techniques: setting negative pixel values to their absolute values and updating them to the estimated values from the previous update. Experiments were conducted using ART, SIRT, and SART algorithms, integrated with the corresponding acceleration techniques, on full-angle, limited-angle, and noisy simulated data, as well as real data. The results validate the effectiveness of the proposed acceleration methods by evaluating image quality using the PSNR and SSIM metrics. Notably, the proposed technique that sets negative pixel values to their absolute values is strongly recommended, as it significantly outperforms the existing technique that sets them to zero, both in terms of image quality and iteration time.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251335119"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251335119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In image reconstruction and processing, incorporating prior information, particularly the nonnegativity of pixel values, is essential. Existing computed tomography (CT) iterative reconstruction algorithms, including the algebraic reconstruction technique (ART), simultaneous ART (SART), and the simultaneous iterative reconstruction technique (SIRT), typically address negative components during the iteration process by either setting them to zero, introducing regularization terms to prevent negativity, or leaving them unchanged. This paper establishes a general framework in which enforcing the nonnegativity prior accelerates the convergence of the reconstructed image toward the true solution. Within this framework, we propose two efficient and simple acceleration techniques: setting negative pixel values to their absolute values and updating them to the estimated values from the previous update. Experiments were conducted using ART, SIRT, and SART algorithms, integrated with the corresponding acceleration techniques, on full-angle, limited-angle, and noisy simulated data, as well as real data. The results validate the effectiveness of the proposed acceleration methods by evaluating image quality using the PSNR and SSIM metrics. Notably, the proposed technique that sets negative pixel values to their absolute values is strongly recommended, as it significantly outperforms the existing technique that sets them to zero, both in terms of image quality and iteration time.

基本加速技术与理论分析图像重建的迭代算法。
在图像重建和处理中,融合先验信息,特别是像素值的非负性,是必不可少的。现有的计算机断层扫描(CT)迭代重建算法,包括代数重建技术(ART)、同步重建技术(SART)和同步迭代重建技术(SIRT),通常在迭代过程中通过将负分量设置为零、引入正则化项以防止负分量,或保持不变来处理负分量。本文建立了一个通用的框架,在这个框架中,增强非负先验加速了重构图像向真解的收敛。在此框架内,我们提出了两种高效且简单的加速技术:将负像素值设置为其绝对值,并将其更新为上次更新的估计值。利用ART、SIRT和SART算法,结合相应的加速技术,在全角度、有限角度和有噪声的模拟数据以及真实数据上进行了实验。通过使用PSNR和SSIM指标评估图像质量,验证了所提加速方法的有效性。值得注意的是,我们强烈推荐将负像素值设置为绝对值的技术,因为它在图像质量和迭代时间方面都明显优于将负像素值设置为零的现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信