Kara E Garcia, Christopher D Kroenke, Philip V Bayly
{"title":"Mechanical stress connects cortical folding to fiber organization in the developing brain.","authors":"Kara E Garcia, Christopher D Kroenke, Philip V Bayly","doi":"10.1016/j.tins.2025.04.001","DOIUrl":null,"url":null,"abstract":"<p><p>During development of the gyrencephalic brain, both the formation of cortical folds and the establishment of axonal tracts require large, coordinated mechanical deformations. Cortical folding enables a high ratio of cortical surface area to brain volume, which is thought to enhance overall processing power. Meanwhile, a complex network of axonal connections facilitates communication between distant brain regions. The mechanisms underlying the formation of brain folds and axon tract organization remain widely debated. However, evidence emerging from measurements of mechanical stress, combined with physical and mathematical models, suggests that constrained cortical expansion generates folds via mechanical instability. In this opinion article, we highlight recent models and experimental data suggesting that mechanical stress induced by cortical folding also mediates axonal growth. We propose a key role for mechanics in establishing brain morphology and the organization of white matter fascicles of the mature brain.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"395-402"},"PeriodicalIF":15.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2025.04.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During development of the gyrencephalic brain, both the formation of cortical folds and the establishment of axonal tracts require large, coordinated mechanical deformations. Cortical folding enables a high ratio of cortical surface area to brain volume, which is thought to enhance overall processing power. Meanwhile, a complex network of axonal connections facilitates communication between distant brain regions. The mechanisms underlying the formation of brain folds and axon tract organization remain widely debated. However, evidence emerging from measurements of mechanical stress, combined with physical and mathematical models, suggests that constrained cortical expansion generates folds via mechanical instability. In this opinion article, we highlight recent models and experimental data suggesting that mechanical stress induced by cortical folding also mediates axonal growth. We propose a key role for mechanics in establishing brain morphology and the organization of white matter fascicles of the mature brain.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.