Improved strong tracking Sage-Husa adaptive algorithm for multi-MEMS IMU data fusion.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Kunpeng Li, Kaixuan Wang, Sujing Song, Xuan Liu, Xiaowei He, Yuqing Hou, Sheng Tang
{"title":"Improved strong tracking Sage-Husa adaptive algorithm for multi-MEMS IMU data fusion.","authors":"Kunpeng Li, Kaixuan Wang, Sujing Song, Xuan Liu, Xiaowei He, Yuqing Hou, Sheng Tang","doi":"10.1063/5.0256636","DOIUrl":null,"url":null,"abstract":"<p><p>A circuit array of 16 micro-electro-mechanical system inertial measurement unit (IMUs) is developed, and an improved multi-IMU data fusion method based on the strong tracking Sage-Husa adaptive Kalman filter (ST-SHAKF) is proposed to achieve high-precision inertial measurement at low cost. The traditional Sage-Husa adaptive (SHAKF) algorithm is simplified for adaptive parameterization, with improved measurement noise variance estimation to ensure positive-definiteness. Filter divergence is addressed by supplementing the SHAKF with a strong tracking filter to maintain convergence. Dynamic weight allocation via minimum variance estimation enables effective multi-IMU data fusion. Experiments show that the proposed method significantly outperforms the traditional Sage-Husa adaptive Kalman filter in terms of Allan variance and standard deviation. Compared to traditional SHAKF, the proposed method achieves better noise suppression and improved fusion accuracy for both acceleration and angular velocity under both static and dynamic conditions.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0256636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

A circuit array of 16 micro-electro-mechanical system inertial measurement unit (IMUs) is developed, and an improved multi-IMU data fusion method based on the strong tracking Sage-Husa adaptive Kalman filter (ST-SHAKF) is proposed to achieve high-precision inertial measurement at low cost. The traditional Sage-Husa adaptive (SHAKF) algorithm is simplified for adaptive parameterization, with improved measurement noise variance estimation to ensure positive-definiteness. Filter divergence is addressed by supplementing the SHAKF with a strong tracking filter to maintain convergence. Dynamic weight allocation via minimum variance estimation enables effective multi-IMU data fusion. Experiments show that the proposed method significantly outperforms the traditional Sage-Husa adaptive Kalman filter in terms of Allan variance and standard deviation. Compared to traditional SHAKF, the proposed method achieves better noise suppression and improved fusion accuracy for both acceleration and angular velocity under both static and dynamic conditions.

多mems IMU数据融合的改进强跟踪Sage-Husa自适应算法。
研制了由16个微机电系统惯性测量单元(imu)组成的电路阵列,提出了一种基于强跟踪Sage-Husa自适应卡尔曼滤波(ST-SHAKF)的改进多imu数据融合方法,以低成本实现高精度惯性测量。将传统的Sage-Husa自适应(SHAKF)算法简化为自适应参数化,改进了测量噪声方差估计,保证了正确定性。通过用强跟踪滤波器补充SHAKF来解决滤波器发散问题,以保持收敛性。通过最小方差估计的动态权重分配实现了有效的多imu数据融合。实验表明,该方法在Allan方差和标准差方面明显优于传统的Sage-Husa自适应卡尔曼滤波。与传统的SHAKF方法相比,该方法在静态和动态条件下都能更好地抑制噪声,提高加速度和角速度的融合精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信