{"title":"Unveiling fetal heart health: harnessing auto-metric graph neural networks and Hazelnut tree search for ECG-based arrhythmia detection.","authors":"M Suganthy, B Sarala, G Sumathy, W T Chembian","doi":"10.1080/10255842.2025.2481232","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal electrocardiogram (ECG) provides a non-invasive means to assess fetal heart health, but isolating the fetal signal from the dominant maternal ECG remains challenging. This study introduces the FHH-AMGNN-HTSOA-ECG-AD method for enhanced fetal arrhythmia detection. It employs Dual Tree Complex Wavelet Transform for denoising and utilizes an Auto-Metric Graph Neural Network (AMGNN) optimized by the Hazelnut Tree Search Algorithm (HTSOA). This integration enables accurate classification of normal and abnormal fetal heart signals. Experimental results demonstrate that the proposed approach significantly outperforms existing methods in terms of accuracy, precision, and specificity.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2481232","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal electrocardiogram (ECG) provides a non-invasive means to assess fetal heart health, but isolating the fetal signal from the dominant maternal ECG remains challenging. This study introduces the FHH-AMGNN-HTSOA-ECG-AD method for enhanced fetal arrhythmia detection. It employs Dual Tree Complex Wavelet Transform for denoising and utilizes an Auto-Metric Graph Neural Network (AMGNN) optimized by the Hazelnut Tree Search Algorithm (HTSOA). This integration enables accurate classification of normal and abnormal fetal heart signals. Experimental results demonstrate that the proposed approach significantly outperforms existing methods in terms of accuracy, precision, and specificity.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.