Neuromelanin and selective neuronal vulnerability to Parkinson's disease.

IF 14.6 1区 医学 Q1 NEUROSCIENCES
Anastasia Filimontseva, YuHong Fu, Miquel Vila, Glenda M Halliday
{"title":"Neuromelanin and selective neuronal vulnerability to Parkinson's disease.","authors":"Anastasia Filimontseva, YuHong Fu, Miquel Vila, Glenda M Halliday","doi":"10.1016/j.tins.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromelanin is a unique pigment made by some human catecholamine neurons. These neurons survive with their neuromelanin content for a lifetime but can also be affected by age-related neurodegenerative conditions, as observed using new neuromelanin imaging techniques. The limited quantities of neuromelanin has made understanding its normal biology difficult, but recent rodent and primate models, as well as omics studies, have confirmed its importance for selective neuronal loss in Parkinson's disease (PD). We review the development of neuromelanin in dopamine versus noradrenaline neurons and focus on previously overlooked cellular organelles in neuromelanin formation and function. We discuss the role of neuromelanin in stimulating endogenous α-synuclein misfolding in PD which renders neuromelanin granules vulnerable, and can exacerbates other pathogenic processes.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2025.04.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromelanin is a unique pigment made by some human catecholamine neurons. These neurons survive with their neuromelanin content for a lifetime but can also be affected by age-related neurodegenerative conditions, as observed using new neuromelanin imaging techniques. The limited quantities of neuromelanin has made understanding its normal biology difficult, but recent rodent and primate models, as well as omics studies, have confirmed its importance for selective neuronal loss in Parkinson's disease (PD). We review the development of neuromelanin in dopamine versus noradrenaline neurons and focus on previously overlooked cellular organelles in neuromelanin formation and function. We discuss the role of neuromelanin in stimulating endogenous α-synuclein misfolding in PD which renders neuromelanin granules vulnerable, and can exacerbates other pathogenic processes.

神经黑色素和选择性神经易感性对帕金森病。
神经黑色素是人类某些儿茶酚胺神经元产生的一种独特的色素。这些神经元与它们的神经黑色素含量一起存活一生,但也可能受到与年龄相关的神经退行性疾病的影响,正如使用新的神经黑色素成像技术所观察到的那样。有限数量的神经黑色素使得理解其正常生物学变得困难,但最近的啮齿动物和灵长类动物模型以及组学研究已经证实了它在帕金森病(PD)中选择性神经元丧失的重要性。我们回顾了神经黑色素在多巴胺和去甲肾上腺素神经元中的发展,并重点介绍了以前被忽视的神经黑色素形成和功能的细胞器。我们讨论了神经黑色素在PD中刺激内源性α-突触核蛋白错误折叠的作用,这使得神经黑色素颗粒易损,并可能加剧其他致病过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信