Olivia Ng, Dong Haur Phua, Jowe Chu, Lucy V E Wilding, Sreenivasulu Reddy Mogali, Jennifer Cleland
{"title":"Answering Patterns in SBA Items: Students, GPT3.5, and Gemini.","authors":"Olivia Ng, Dong Haur Phua, Jowe Chu, Lucy V E Wilding, Sreenivasulu Reddy Mogali, Jennifer Cleland","doi":"10.1007/s40670-024-02232-4","DOIUrl":null,"url":null,"abstract":"<p><p>While large language models (LLMs) are often used to generate and answer exam questions, limited work compares their performance across multiple iterations using item statistics. This study aims to fill that gap by investigating answering patterns of how LLMs respond to single-best answer (SBA) questions, comparing their performance to that of students. Forty-one SBA questions for first-year medical students were assessed using the most easily assessable and free-to-use GPT3.5 and Gemini across 100 iterations. Both LLMs exhibited more repetitive and clustered answering patterns compared to students, which can be problematic as it may compound mistakes by repeating error selection. Distractor analysis revealed that students performed better when managing multiple options in the SBA format. We found that these free-to-use LLMs are inferior to well-trained students or specialists in handling technical questions. We have also highlighted concerns on LLMs' contextual interpretation of these items and the need of human oversight in the medical education assessment process.</p>","PeriodicalId":37113,"journal":{"name":"Medical Science Educator","volume":"35 2","pages":"629-632"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Science Educator","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40670-024-02232-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
While large language models (LLMs) are often used to generate and answer exam questions, limited work compares their performance across multiple iterations using item statistics. This study aims to fill that gap by investigating answering patterns of how LLMs respond to single-best answer (SBA) questions, comparing their performance to that of students. Forty-one SBA questions for first-year medical students were assessed using the most easily assessable and free-to-use GPT3.5 and Gemini across 100 iterations. Both LLMs exhibited more repetitive and clustered answering patterns compared to students, which can be problematic as it may compound mistakes by repeating error selection. Distractor analysis revealed that students performed better when managing multiple options in the SBA format. We found that these free-to-use LLMs are inferior to well-trained students or specialists in handling technical questions. We have also highlighted concerns on LLMs' contextual interpretation of these items and the need of human oversight in the medical education assessment process.
期刊介绍:
Medical Science Educator is the successor of the journal JIAMSE. It is the peer-reviewed publication of the International Association of Medical Science Educators (IAMSE). The Journal offers all who teach in healthcare the most current information to succeed in their task by publishing scholarly activities, opinions, and resources in medical science education. Published articles focus on teaching the sciences fundamental to modern medicine and health, and include basic science education, clinical teaching, and the use of modern education technologies. The Journal provides the readership a better understanding of teaching and learning techniques in order to advance medical science education.