Relationship between bmi and glomerular filtration rate in a large cohort initiating a weight loss program: differential contributions of fat mass, fat-free mass, and abdominal fat compartments.
Alessandro Leone, Francesca Menichetti, Laila Vignati, Federica Sileo, Ramona De Amicis, Andrea Foppiani, Simona Bertoli, Alberto Battezzati
{"title":"Relationship between bmi and glomerular filtration rate in a large cohort initiating a weight loss program: differential contributions of fat mass, fat-free mass, and abdominal fat compartments.","authors":"Alessandro Leone, Francesca Menichetti, Laila Vignati, Federica Sileo, Ramona De Amicis, Andrea Foppiani, Simona Bertoli, Alberto Battezzati","doi":"10.1186/s12937-025-01150-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The relationship between BMI and chronic kidney disease is controversial, likely due to the inability of BMI to accurately define body composition and adipose tissue distribution. Our objective was to evaluate the synergistic contribution of fat-free mass, fat mass, visceral (VAT) and subcutaneous (SAT) adipose tissue, to glomerular filtration rate (GFR) in a large cohort of subjects.</p><p><strong>Methods: </strong>A cross-sectional study of 9704 subjects (72% female, median age 47y, median BMI 28.1 kg/m<sup>2</sup>) was carried out. Each patient underwent an anthropometric assessment (weight, height, waist circumference, % of body fat by body skinfolds), an ultrasound measurement of VAT and SAT and blood sampling to measure metabolic syndrome (MS) parameters and serum creatinine. GFR was estimated using the EPI-CKD equation. MS was defined according to the harmonized criteria.</p><p><strong>Results: </strong>Among 9,704 subjects, 61.1% had a normal renal function, while 29.3% reported a reduction, from slightly to severely. The BMI was initially negatively associated with GFR in the univariate model (β = -0.32, 95% CI: -0.39, -0.25), but after adjusting for %body fat, the association was lost. We then split the BMI into its two components, Fat Mass Index (FMI) and Fat Free Mass Index (FFMI), and observed that FMI (β = -1.23, 95% CI: -1.35, -1.12) and FFMI (β = 0.79, 95% CI: 0.65, 0.92) were associated with a decrease and an increase in GFR, respectively. VAT (β = -1.83, 95% CI: -2.00, -1.67) and SAT (β = 3.21, 95% CI: 2.86, 3.57) were independently associated with a decrease and an increase in GFR, respectively. Similar results were obtained when studying the association between BMI, body composition, adipose tissue distribution, and the risk of reduced GFR (<90 ml/min/1.73 m<sup>2</sup>). Stratification by sex and MS did not substantially alter the results. A significant association between VAT and reduced GFR was observed only in women.</p><p><strong>Conclusions: </strong>Our study highlights the importance of considering body composition and fat distribution when assessing renal function.</p>","PeriodicalId":19203,"journal":{"name":"Nutrition Journal","volume":"24 1","pages":"78"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12937-025-01150-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The relationship between BMI and chronic kidney disease is controversial, likely due to the inability of BMI to accurately define body composition and adipose tissue distribution. Our objective was to evaluate the synergistic contribution of fat-free mass, fat mass, visceral (VAT) and subcutaneous (SAT) adipose tissue, to glomerular filtration rate (GFR) in a large cohort of subjects.
Methods: A cross-sectional study of 9704 subjects (72% female, median age 47y, median BMI 28.1 kg/m2) was carried out. Each patient underwent an anthropometric assessment (weight, height, waist circumference, % of body fat by body skinfolds), an ultrasound measurement of VAT and SAT and blood sampling to measure metabolic syndrome (MS) parameters and serum creatinine. GFR was estimated using the EPI-CKD equation. MS was defined according to the harmonized criteria.
Results: Among 9,704 subjects, 61.1% had a normal renal function, while 29.3% reported a reduction, from slightly to severely. The BMI was initially negatively associated with GFR in the univariate model (β = -0.32, 95% CI: -0.39, -0.25), but after adjusting for %body fat, the association was lost. We then split the BMI into its two components, Fat Mass Index (FMI) and Fat Free Mass Index (FFMI), and observed that FMI (β = -1.23, 95% CI: -1.35, -1.12) and FFMI (β = 0.79, 95% CI: 0.65, 0.92) were associated with a decrease and an increase in GFR, respectively. VAT (β = -1.83, 95% CI: -2.00, -1.67) and SAT (β = 3.21, 95% CI: 2.86, 3.57) were independently associated with a decrease and an increase in GFR, respectively. Similar results were obtained when studying the association between BMI, body composition, adipose tissue distribution, and the risk of reduced GFR (<90 ml/min/1.73 m2). Stratification by sex and MS did not substantially alter the results. A significant association between VAT and reduced GFR was observed only in women.
Conclusions: Our study highlights the importance of considering body composition and fat distribution when assessing renal function.
期刊介绍:
Nutrition Journal publishes surveillance, epidemiologic, and intervention research that sheds light on i) influences (e.g., familial, environmental) on eating patterns; ii) associations between eating patterns and health, and iii) strategies to improve eating patterns among populations. The journal also welcomes manuscripts reporting on the psychometric properties (e.g., validity, reliability) and feasibility of methods (e.g., for assessing dietary intake) for human nutrition research. In addition, study protocols for controlled trials and cohort studies, with an emphasis on methods for assessing dietary exposures and outcomes as well as intervention components, will be considered.
Manuscripts that consider eating patterns holistically, as opposed to solely reductionist approaches that focus on specific dietary components in isolation, are encouraged. Also encouraged are papers that take a holistic or systems perspective in attempting to understand possible compensatory and differential effects of nutrition interventions. The journal does not consider animal studies.
In addition to the influence of eating patterns for human health, we also invite research providing insights into the environmental sustainability of dietary practices. Again, a holistic perspective is encouraged, for example, through the consideration of how eating patterns might maximize both human and planetary health.