Abdullah Shehata Abdelatief, Antonius J Renders, Mohammed K Alqedra, Jannek J Hansen, David Hunger, Lars Rippe, Andreas Walther
{"title":"Micro-cavity length stabilization for fluorescence enhancement using schemes based on higher-order spatial modes.","authors":"Abdullah Shehata Abdelatief, Antonius J Renders, Mohammed K Alqedra, Jannek J Hansen, David Hunger, Lars Rippe, Andreas Walther","doi":"10.1063/5.0251115","DOIUrl":null,"url":null,"abstract":"<p><p>We report on the experimental investigation of potential high-performance cavity length stabilization using odd-indexed higher-order spatial modes. Schemes based on higher-order modes are particularly useful for micro-cavities that are used for enhanced fluorescence detection of a few emitters, which need to minimize photons leaking from a stabilization beam. We describe the design and construction of an assembly for a microcavity setup with tunable high passive stability. In addition, different types of active stabilization techniques based on higher-order modes are then implemented and characterized based on their performance. We achieved a stability of about 0.5 pm rms, while the error photons leaking from the continuous locking beam to a fluorescence detector are suppressed by more than 100-fold. We expect these results to be important for quantum technology implementations of various emitter-cavity setups, where these techniques provide a useful tool to meet the highly challenging demands.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0251115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the experimental investigation of potential high-performance cavity length stabilization using odd-indexed higher-order spatial modes. Schemes based on higher-order modes are particularly useful for micro-cavities that are used for enhanced fluorescence detection of a few emitters, which need to minimize photons leaking from a stabilization beam. We describe the design and construction of an assembly for a microcavity setup with tunable high passive stability. In addition, different types of active stabilization techniques based on higher-order modes are then implemented and characterized based on their performance. We achieved a stability of about 0.5 pm rms, while the error photons leaking from the continuous locking beam to a fluorescence detector are suppressed by more than 100-fold. We expect these results to be important for quantum technology implementations of various emitter-cavity setups, where these techniques provide a useful tool to meet the highly challenging demands.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.