srp54 promotes motor neuron development and is required for motility in zebrafish

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Nikaela Losievski , Pooja Kamath , Ashley Fox , Natalie M. Aloi , Megan C. Baird , Amy Everest , Thomas L. Gallagher , Sharon L. Amacher , Stephen J. Kolb
{"title":"srp54 promotes motor neuron development and is required for motility in zebrafish","authors":"Nikaela Losievski ,&nbsp;Pooja Kamath ,&nbsp;Ashley Fox ,&nbsp;Natalie M. Aloi ,&nbsp;Megan C. Baird ,&nbsp;Amy Everest ,&nbsp;Thomas L. Gallagher ,&nbsp;Sharon L. Amacher ,&nbsp;Stephen J. Kolb","doi":"10.1016/j.neuroscience.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>The signal recognition particle (SRP) is a highly conserved ribonucleoprotein (RNP) that translocates a subset of secreted and integral membrane proteins to the endoplasmic reticulum for proper localization. The most conserved SRP protein component, SRP54, has been implicated in the molecular etiology of spinal muscular atrophy (SMA). A key feature of SMA is the selective loss of motor neurons; however, the mechanism underlying this selectivity is unknown. SMA arises from deficient levels of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. SMN is proposed to assemble the SRP, and SMN deficiency in SMA may attenuate SRP function and contribute to motor neuron death in patients. Using zebrafish embryos homozygous for a <em>srp54</em> nonsense mutation (<em>srp54<sup>-/-</sup></em>), we investigated the requirement of Srp54 protein in motor axon development. The first grossly distinguishable phenotype observed in <em>srp54<sup>-/-</sup></em> embryos was reduced motility at 30 h postfertilization (hpf). Additionally, we detected reduced length and branching of caudal primary motor axons in <em>srp54<sup>-/-</sup></em> embryos compared to <em>srp54<sup>+/+</sup></em> and <em>srp54<sup>+/-</sup></em> siblings at 30 hpf, suggesting that defective motor neurons may contribute to the observed immotility. We also examined additional neural, secretory, and migratory cell types at 30 hpf to assess whether motor neurons are especially vulnerable to Srp54 deficiency. Of the cell types evaluated, only the hatching gland had distinct expression pattern alterations in <em>srp54<sup>-/-</sup></em> embryos at this developmental stage. Our findings suggest that Srp54 deficiency results in motor neuron developmental defects and support the hypothesis that SRP54 may influence motor neuron selectivity in SMA.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"579 ","pages":"Pages 24-34"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225003604","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The signal recognition particle (SRP) is a highly conserved ribonucleoprotein (RNP) that translocates a subset of secreted and integral membrane proteins to the endoplasmic reticulum for proper localization. The most conserved SRP protein component, SRP54, has been implicated in the molecular etiology of spinal muscular atrophy (SMA). A key feature of SMA is the selective loss of motor neurons; however, the mechanism underlying this selectivity is unknown. SMA arises from deficient levels of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. SMN is proposed to assemble the SRP, and SMN deficiency in SMA may attenuate SRP function and contribute to motor neuron death in patients. Using zebrafish embryos homozygous for a srp54 nonsense mutation (srp54-/-), we investigated the requirement of Srp54 protein in motor axon development. The first grossly distinguishable phenotype observed in srp54-/- embryos was reduced motility at 30 h postfertilization (hpf). Additionally, we detected reduced length and branching of caudal primary motor axons in srp54-/- embryos compared to srp54+/+ and srp54+/- siblings at 30 hpf, suggesting that defective motor neurons may contribute to the observed immotility. We also examined additional neural, secretory, and migratory cell types at 30 hpf to assess whether motor neurons are especially vulnerable to Srp54 deficiency. Of the cell types evaluated, only the hatching gland had distinct expression pattern alterations in srp54-/- embryos at this developmental stage. Our findings suggest that Srp54 deficiency results in motor neuron developmental defects and support the hypothesis that SRP54 may influence motor neuron selectivity in SMA.
Srp54促进运动神经元的发育,是斑马鱼运动所必需的。
信号识别颗粒(SRP)是一种高度保守的核糖核蛋白(RNP),它将一部分分泌的和完整的膜蛋白转运到内质网进行适当的定位。最保守的SRP蛋白成分SRP54与脊髓性肌萎缩症(SMA)的分子病因有关。SMA的一个关键特征是运动神经元的选择性丧失;然而,这种选择性的机制尚不清楚。SMA是由运动神经元存活蛋白(SMN)普遍表达的水平不足引起的。SMN被认为可以组装SRP, SMA中SMN的缺乏可能会减弱SRP的功能并导致患者的运动神经元死亡。利用srp54无义突变(srp54-/-)纯合的斑马鱼胚胎,我们研究了srp54蛋白在运动轴突发育中的需求。在srp54-/-胚胎中观察到的第一个明显可区分的表型是受精后30 h (hpf)运动能力降低。此外,与srp54+/+和srp54+/-兄弟姐妹相比,我们在30 hpf时检测到srp54-/-胚胎的尾侧初级运动轴突长度和分支减少,这表明运动神经元缺陷可能导致观察到的运动不动。我们还在30 hpf下检测了其他神经、分泌和迁移细胞类型,以评估运动神经元是否特别容易受到Srp54缺乏的影响。在被评估的细胞类型中,只有孵化腺在srp54-/-胚胎的这个发育阶段有明显的表达模式改变。我们的研究结果表明Srp54缺乏导致运动神经元发育缺陷,并支持Srp54可能影响SMA运动神经元选择性的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信