A semiparametric accelerated failure time-based mixture cure tree.

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2024-10-23 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2024.2418476
Wisdom Aselisewine, Suvra Pal, Helton Saulo
{"title":"A semiparametric accelerated failure time-based mixture cure tree.","authors":"Wisdom Aselisewine, Suvra Pal, Helton Saulo","doi":"10.1080/02664763.2024.2418476","DOIUrl":null,"url":null,"abstract":"<p><p>The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 6","pages":"1177-1194"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2418476","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.

基于半参数加速失效时间的混合修复树。
混合治愈率模型(MCM)是最广泛用于分析治愈亚组生存数据的模型。在这种情况下,对治愈概率进行建模的最常见策略是假设一个具有已知链接函数的广义线性模型,例如logit链接函数。然而,logit模型只能捕捉协变量对治愈概率的简单影响。在本文中,我们提出了一种新的MCM,其中治愈概率使用基于决策树的分类器建模,未治愈的生存分布使用加速故障时间结构建模。为了估计模型参数,我们开发了一种期望最大化算法。我们的仿真研究表明,与基于逻辑的MCM和基于样条的MCM相比,该模型在捕获非线性分类边界方面表现更好。这使得对治愈概率的估计更加准确和精确,从而提高了治愈预测的准确性。我们进一步证明,捕获非线性分类边界也改善了对未治愈受试者生存分布的估计结果。最后,我们将提出的模型和EM算法应用于现有的骨髓移植数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信