Multi-scale geometric transformer for sparse-view X-ray 3D foot reconstruction.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-07-01 Epub Date: 2025-04-25 DOI:10.1177/08953996251319194
Wei Wang, Li An, Gengyin Han
{"title":"Multi-scale geometric transformer for sparse-view X-ray 3D foot reconstruction.","authors":"Wei Wang, Li An, Gengyin Han","doi":"10.1177/08953996251319194","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sparse-View X-ray 3D Foot Reconstruction aims to reconstruct the three-dimensional structure of the foot from sparse-view X-ray images, a challenging task due to data sparsity and limited viewpoints.</p><p><strong>Objective: </strong>This paper presents a novel method using a multi-scale geometric Transformer to enhance reconstruction accuracy and detail representation.</p><p><strong>Methods: </strong>Geometric position encoding technology and a window mechanism are introduced to divide X-ray images into local areas, finely capturing local features. A multi-scale Transformer module based on Neural Radiance Fields (NeRF) enhances the model's ability to express and capture details in complex structures. An adaptive weight learning strategy further optimizes the Transformer's feature extraction and long-range dependency modelling.</p><p><strong>Results: </strong>Experimental results demonstrate that the proposed method significantly improves the reconstruction accuracy and detail preservation of the foot structure under sparse-view X-ray conditions. The multi-scale geometric Transformer effectively captures local and global features, leading to more accurate and detailed 3D reconstructions.</p><p><strong>Conclusions: </strong>The proposed method advances medical image reconstruction, significantly improving the accuracy and detail preservation of 3D foot reconstructions from sparse-view X-ray images.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"776-787"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251319194","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sparse-View X-ray 3D Foot Reconstruction aims to reconstruct the three-dimensional structure of the foot from sparse-view X-ray images, a challenging task due to data sparsity and limited viewpoints.

Objective: This paper presents a novel method using a multi-scale geometric Transformer to enhance reconstruction accuracy and detail representation.

Methods: Geometric position encoding technology and a window mechanism are introduced to divide X-ray images into local areas, finely capturing local features. A multi-scale Transformer module based on Neural Radiance Fields (NeRF) enhances the model's ability to express and capture details in complex structures. An adaptive weight learning strategy further optimizes the Transformer's feature extraction and long-range dependency modelling.

Results: Experimental results demonstrate that the proposed method significantly improves the reconstruction accuracy and detail preservation of the foot structure under sparse-view X-ray conditions. The multi-scale geometric Transformer effectively captures local and global features, leading to more accurate and detailed 3D reconstructions.

Conclusions: The proposed method advances medical image reconstruction, significantly improving the accuracy and detail preservation of 3D foot reconstructions from sparse-view X-ray images.

稀疏视图x射线三维足部重建的多尺度几何变压器。
背景:稀疏视图x射线3D足部重建旨在从稀疏视图x射线图像重建足部的三维结构,由于数据稀疏和视点有限,这是一项具有挑战性的任务。目的:提出一种利用多尺度几何变压器提高重建精度和细节表达的新方法。方法:采用几何位置编码技术和窗口机制对x射线图像进行局部分割,精细捕捉局部特征。基于神经辐射场(NeRF)的多尺度变压器模块增强了模型表达和捕获复杂结构细节的能力。自适应权重学习策略进一步优化了Transformer的特征提取和远程依赖关系建模。结果:实验结果表明,该方法显著提高了稀疏x射线条件下足部结构的重建精度和细节保存。多尺度几何变压器有效捕获局部和全局特征,导致更准确和详细的3D重建。结论:该方法促进了医学图像重建,显著提高了稀疏x线图像三维足部重建的准确性和细节保存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信