Artificial Intelligence in Vascular Neurology: Applications, Challenges, and a Review of AI Tools for Stroke Imaging, Clinical Decision Making, and Outcome Prediction Models.

IF 4.8 2区 医学 Q1 CLINICAL NEUROLOGY
Murad M Alqadi, Sarkis G Morales Vidal
{"title":"Artificial Intelligence in Vascular Neurology: Applications, Challenges, and a Review of AI Tools for Stroke Imaging, Clinical Decision Making, and Outcome Prediction Models.","authors":"Murad M Alqadi, Sarkis G Morales Vidal","doi":"10.1007/s11910-025-01422-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Artificial intelligence (AI) promises to compress stroke treatment timelines, yet its clinical return on investment remains uncertain. We interrogate state‑of‑the‑art AI platforms across imaging, workflow orchestration, and outcome prediction to clarify value drivers and execution risks.</p><p><strong>Recent findings: </strong>Convolutional, recurrent, and transformer architectures now trigger large‑vessel‑occlusion alerts, delineate ischemic core in seconds, and forecast 90‑day function. Commercial deployments-RapidAI, Viz.ai, Aidoc-report double‑digit reductions in door‑to‑needle metrics and expanded thrombectomy eligibility. However, dataset bias, opaque reasoning, and limited external validation constrain scalability. Hybrid image‑plus‑clinical models elevate predictive accuracy but intensify data‑governance demands. AI can operationalize precision stroke care, but enterprise‑grade adoption requires federated data pipelines, explainable‑AI dashboards, and fit‑for‑purpose regulation. Prospective multicenter trials and continuous lifecycle surveillance are mandatory to convert algorithmic promise into reproducible, equitable patient benefit.</p>","PeriodicalId":10831,"journal":{"name":"Current Neurology and Neuroscience Reports","volume":"25 1","pages":"34"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neurology and Neuroscience Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11910-025-01422-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: Artificial intelligence (AI) promises to compress stroke treatment timelines, yet its clinical return on investment remains uncertain. We interrogate state‑of‑the‑art AI platforms across imaging, workflow orchestration, and outcome prediction to clarify value drivers and execution risks.

Recent findings: Convolutional, recurrent, and transformer architectures now trigger large‑vessel‑occlusion alerts, delineate ischemic core in seconds, and forecast 90‑day function. Commercial deployments-RapidAI, Viz.ai, Aidoc-report double‑digit reductions in door‑to‑needle metrics and expanded thrombectomy eligibility. However, dataset bias, opaque reasoning, and limited external validation constrain scalability. Hybrid image‑plus‑clinical models elevate predictive accuracy but intensify data‑governance demands. AI can operationalize precision stroke care, but enterprise‑grade adoption requires federated data pipelines, explainable‑AI dashboards, and fit‑for‑purpose regulation. Prospective multicenter trials and continuous lifecycle surveillance are mandatory to convert algorithmic promise into reproducible, equitable patient benefit.

血管神经学中的人工智能:应用、挑战和人工智能工具在卒中成像、临床决策和结果预测模型中的回顾。
综述目的:人工智能(AI)有望缩短中风治疗时间,但其临床投资回报仍不确定。我们在成像、工作流编排和结果预测方面询问最先进的人工智能平台,以澄清价值驱动因素和执行风险。最近的发现:卷积、循环和变压器结构现在触发大血管闭塞警报,在几秒钟内描绘缺血核心,并预测90天的功能。商业部署——rapidai、Viz.ai、aidoc——报告了门到针指标的两位数下降和扩大的血栓切除资格。然而,数据集偏差、不透明的推理和有限的外部验证限制了可扩展性。图像加临床的混合模型提高了预测的准确性,但也加剧了对数据治理的需求。人工智能可以实现精确的中风护理,但企业级的采用需要联合数据管道、可解释的人工智能仪表板和适合目的的监管。前瞻性多中心试验和持续的生命周期监测是将算法承诺转化为可重复的、公平的患者获益的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Current Neurology and Neuroscience Reports provides in-depth review articles contributed by international experts on the most significant developments in the field. By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to the diagnosis, treatment, management, and prevention of neurological disease and disorders. Presents the views of experts on current advances in neurology and neuroscience Gathers and synthesizes important recent papers on the topic Includes reviews of recently published clinical trials, valuable web sites, and commentaries from well-known figures in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信