The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Matineh Behzadi, Anahita Azinfar, Hawraa Ibrahim Alshakarchi, Yeganeh Khazaei, Ibrahim Saeed Gataa, Gordon A Ferns, Hamid Naderi, Amir Avan, Hamid Fiuji, Masoud Pezeshki Rad
{"title":"The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer.","authors":"Matineh Behzadi, Anahita Azinfar, Hawraa Ibrahim Alshakarchi, Yeganeh Khazaei, Ibrahim Saeed Gataa, Gordon A Ferns, Hamid Naderi, Amir Avan, Hamid Fiuji, Masoud Pezeshki Rad","doi":"10.2174/0113816128369168250311172823","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128369168250311172823","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.

人工智能在乳腺癌诊断中的潜在应用。
乳腺癌对全球健康构成重大挑战,需要改进诊断和治疗战略。本文探讨了人工智能(AI)在增强乳腺癌病理学方面的作用,强调了风险评估、早期发现以及组织病理学和乳房x光检查数据的分析。人工智能平台有望预测乳腺癌风险,并在临床诊断前3年识别肿瘤。深度学习技术,特别是卷积神经网络(cnn),有效地分类癌症亚型和肿瘤风险等级,达到与放射科专家相当的准确性。尽管取得了这些进步,但对高质量数据集和临床工作流程整合的需求等挑战仍然存在。对人工智能技术的持续研究对于推进乳腺癌检测和改善患者预后至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信