Sophie F Hill, Sophie R Liebergall, Eric R Wengert, Ethan M Goldberg, Brian B Theyel
{"title":"Interneurons exhibit attenuated ectopic action potential firing in a severe neurodevelopmental disorder.","authors":"Sophie F Hill, Sophie R Liebergall, Eric R Wengert, Ethan M Goldberg, Brian B Theyel","doi":"10.1152/jn.00133.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Dravet syndrome (DS) is a severe neurodevelopmental disorder associated with treatment-resistant epilepsy and features of autism spectrum disorder due to loss of the voltage-gated sodium channel subunit Nav1.1. Recent work suggests that a pathogenic mechanism of DS is impaired action potential propagation along axons of cerebral cortex parvalbumin-positive fast-spiking GABAergic interneurons (PVINs). Here, we investigated another aspect of axonal physiology: action potentials generated in the distal axon, known as \"ectopic\" action potentials (EAPs). We hypothesized that EAP frequency could be a proxy for the excitability of the distal axon and that EAPs would be attenuated in neocortical layer 2/3 PVINs from DS mice due to axonal dysfunction. We identified reduced EAP generation in DS PVINs at both <i>postnatal day</i> (P)18-21 and P35-56 and a complete absence of barrage (repetitive EAP) firing. This is the first evidence of impaired EAP firing in a disease model.<b>NEW & NOTEWORTHY</b> Dravet syndrome (DS) is a severe form of epilepsy primarily caused by reduced excitability of inhibitory neurons. Our research identifies a new abnormality in DS mice: reduced ectopic action potentials (EAPs). We have previously shown that EAPs are engaged after increased excitability, manifesting in most parvalbumin-expressing interneurons (PVINs) as a high-frequency train of persistent action potentials. Our work represents the first evidence linking a deficiency in EAP generation-an underexplored intrinsic property-with any neuropathology.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":"1692-1698"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00133.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dravet syndrome (DS) is a severe neurodevelopmental disorder associated with treatment-resistant epilepsy and features of autism spectrum disorder due to loss of the voltage-gated sodium channel subunit Nav1.1. Recent work suggests that a pathogenic mechanism of DS is impaired action potential propagation along axons of cerebral cortex parvalbumin-positive fast-spiking GABAergic interneurons (PVINs). Here, we investigated another aspect of axonal physiology: action potentials generated in the distal axon, known as "ectopic" action potentials (EAPs). We hypothesized that EAP frequency could be a proxy for the excitability of the distal axon and that EAPs would be attenuated in neocortical layer 2/3 PVINs from DS mice due to axonal dysfunction. We identified reduced EAP generation in DS PVINs at both postnatal day (P)18-21 and P35-56 and a complete absence of barrage (repetitive EAP) firing. This is the first evidence of impaired EAP firing in a disease model.NEW & NOTEWORTHY Dravet syndrome (DS) is a severe form of epilepsy primarily caused by reduced excitability of inhibitory neurons. Our research identifies a new abnormality in DS mice: reduced ectopic action potentials (EAPs). We have previously shown that EAPs are engaged after increased excitability, manifesting in most parvalbumin-expressing interneurons (PVINs) as a high-frequency train of persistent action potentials. Our work represents the first evidence linking a deficiency in EAP generation-an underexplored intrinsic property-with any neuropathology.
期刊介绍:
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.